
NAVAL PO11GRADUATE SCHOOL
Monterey, California

AD-A281 748

THESIS LJuEoTE

DRUGDOG 3.0:
U. S. NAVY RANDOM URINALYSIS

SOFTWARE PACKAGE

by

(% Dale E. Wilson

IO March, 1994

Thesis Co-Advisors: Norm F. Schniedewind
William B. Short

Approved for public release; distribution is unlimited.

. 14 038

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average I hour per response, including the tune for reviewing tstruction. searching

existing data soucs, gathenng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this
burden estimate or any other aspect of this collection of infornation, including suggtions for reducing this burden, to Washington Headquarters Services.
Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204. Arlington. VA 22202-4302. and to the Office of Management

and Budget. Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

15 MAR 94 Master's Thesis

4. TITLE AND SUBTITLE DRUGDOG 3.0: U. S. NAVY RANDOM 5. FUNDING NUMBERS

URINALYSIS SOFTWARE PACKAGE

6. AUTHOR(S) Dale E. Wilson
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING

Naval Postgraduate School ORGANIZATION

Monterey CA 93943-5000 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited. A

13. ABSTRACT (maximum 200 words)

Although the United States Navy has had a mandatory Random Urinalysis Program in effect for many
years. there has never been a formal, standardize methodology to implement the process. OPNAV
INSTRUCTION 5350.4 (series) provides guidance on what must be accomplished, but not how to
accomplish it. Automation and standardization of the program through software implementation can lend
confidence to personnel who undergo urinalysis testing that the program is fairly and uniformly applied to
each member of the command. Informal previous attempts at developing Random Urinalysis software
utilizing unstructured methods has had less than successful results. To address this problem, this thesis
describes the development of a complete software application designed to automate the Random
Urinalysis Program. Using previous versions of urinalysis software as templates, a standardized, structured
approach to application development is used to create a new system. The Definition, Requirements.
Evaluation, Design and Implementation phases of software development life-cycle are fully utilized
during project development. The result is an actual working tool for the fleet. DRUGDOG 3.0 is a
comprehensive software application that will aid individual Urinalysis Coordinators in implementing the
Navy's Random Urinalysis Program within their command.

14. SUBJECT TERMS Random Urinalysis Program 15. NUMBER OF

PAGES 119

16. PRICE CODE

17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI- 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

i

Approved for public release; distribution is unlimited.

DRUGDOG 3.0: U. S. NAVY

RANDOM URINALYSIS SOFTWARE PACKAGE

by

Dale E. Wilson
Lieutenant, United States Navy

B.S., George Mason University, 1981
B.S., Chapman University, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY from the

NAVAL POSTGRADUATE SCHOOL

March, 1994

Author: 1"t4l .. I j /

Dale E. Wit on -

Approved by:
Norman F. Schneidewind, Co-Thesis Advisor

William B. Short, Thesis Co-Advisor

Davl~dR . Whihairman
Department of System _na ement

ABSTRACT

Although the United States Navy has had a mandatory Random Urinalysis

Program in effect for many years, there has never been a formal, standardize

methodology to implement the process. OPNAV INSTRUCTION 5350.4 (series)

provides guidance on what must be accomplished, but not how to accomplish it.

Automation and standardization of the program through software implementation

can lend confidence to personnel who are subject to the program that it is fairly

and uniformly applied to each member of the command. Informal attempts at

developing Random Urinalysis software utilizing unsLuctured methods has had less

than successful results. To address this problem, this thesis describes the

development of a complete software application designed to automate the Random

Urinalysis Program. Using previous versions of urinalysis software as templates,

a standardized, structured approach to application development is used to create a

new software system. The Definition, Requirements, Evaluation, Design and
For

Implementation phases of software development life-cycle are fully utilized during l
3

project development. The result is an actual working tool for the fleet. DRUGDOG zed 0

3.0 is a comprehensive software application that will aid individual Urinalysis
,ni

Coordinators in implementing the Navy's Random Urinalysis Program within their Codes.Labilty Codes

Avail andl orcommand. Dist Special
iii I//1

TABLE OF CONTENTS

1. INTRODUCTION 1

A. BACKGROUND 1

B. HISTORY OF DR UGDOG SOFTWARE...............3

1. DRUGDOG Version 1.0 3

2. DR UGDOG Version 2.0 4

3. DR UGDOG Version 2.1 6

C. ORGANIZATION................................7

II. DRUODOG 3.0 SOFTWARE 9

A. GENERAL SOFTWARE ISSUES 9

1. Memory and Operating System Requirements 9

2. User Interface 10

3. Context-Sensitive Help....................... 11

4. Tables and Listings 12

5. Report Generation 13

6. Program Installation 13

iv

III. APPLICATION DEVELOPMENT 15

A. PHASE I: DEFINITION PHASE 16

1. M ethodology 16

2. Application 16

B. PHASE II: REQUIREMENTS PHASE 17

1. M ethodology 17

2. Application 18

a. Data Requirements 19

b. Functional Requirements 20

c. Hardware Considerations 21

(1) Target Platform 21

(2) Alternate Platforms 22

C. PHASE III: EVALUATION PHASE 23

1. M ethodology 23

2. Application 23

D. PHASE IV: DESIGN PHASE 25

1. Logical Database Design 25

2. Physical Database Design 28

3. DRUGDOG 3.0 Application Design 29

a. Menu Design 30

V

b. Screen and Table Design 31

c. Report Generation 33

E. PHASE V: IMPLEMENTATION PHASE 34

1. System Programming 34

2. Testing 35

3. Installation 37

IV. DEVELOPMENT ENVIRONMENT 39

A. FOURTH GENERATION LANGUAGES 40

B. INTEGRATED DEVELOPMENT ENVIRONMENT

(ID E) 42

1. DESIGNER Utility 43

2. EDITOR Utility 45

3. COMPILER Utility 46

4. PROCESSOR Utility 47

5. TRANSLATOR Utility 48

C. RANDOM SELECTION CODING 48

1. Random Number List Generation 49

2. Physical Record Selection 50

vi

V. CONCLUSIONS 51

APPENDIX A .. 54

A. TABLE 1: SEMANTIC OBJECT DIAGRAM 54

B. TABLE 2: OBJECT DEFINITIONS 55

C. TABLE 3: DOMAIN DEFINITIONS 56

D. TABLE 4: PERSONNEL UPDATE MECHANISMS 57

E. TABLE 5: PERSONNEL DISPLAY AND CONTROL

MECHANISMS 58

APPENDIX B .. 60

A. TABLE 6: DRUGDOG.DAT DATA ELEMENTS 60

B. TABLE 7: DRUGDOG SYSTEM VIEWS 61

1. Display of Total Personnel 61

2. Record Addition/Modification Form 62

3. Display of a Random Urinalysis Selection 63

C. TABLE 8: DRUGDOG REPORTS 64

1. Urinalysis Listings 64

APPENDIX C .. 66

vii

APPENDIX D 92

LIST OF REFERENCES 111

INITIAL DISTRIBUTION LIST...........................112

viii

I. INTRODUCTION

A. BACKGROUND

Although the United States Navy has had a mandatory Random

Urinalysis Program in effect for many years, there has never been a

formal, standardize methodology to implement the process. OPNAV

INSTRUCTION 5350.4 (series) provides guidance on what must be

accomplished, but not how to accomplish it. In a general sense, there is

a certain amount of ambiguity in all Naval Instructions. This allows a

military unit the flexibility to interpret a given Instruction in such a way

that it meets both the intent of the Instruction and the needs of the

command.

However, when it involves an issue as important as alcohol and drug

abuse, a new perspective emerges. It can be argued that the policies and

procedures regarding a program which has career-impacting potential

should be of a more rigid and structured nature. Indeed, the author has

witnessed numerous "spirited" discussions over the fairness of the

implementation of the Random Urinalysis Program. Automation and

standardization of the program could give personnel (who are subject to

1

the process) more confidence that it is fairly and uniformly applied to

each member of the command.

There is little argument that there should be an aggressive practice

in the detection and elimination of drug abusers from military service.

The Navy has established a "Zero Tolerance" policy of alcohol and drug

abuse. The abuse of alcohol and other drug by Navy members can

seriously damage their physical and mental health, and can jeopardize

their safety and the safety of their shipmates. Perhaps most important,

it can adversely affect the combat or mission-readiness of the military

unit. Naval policy specifically states that:

"...alcohol and other drug abuse is costly in terms of time lost and
is a severe detriment to morale and esprit de corps. It undermines
the very fiber of combat readiness, health, safety, discipline,
reliability, judgment and loyalty. The abuser, as well as the
abuser's shipmates and family, suffers. Alcohol and other drug
abuse is incompatible with the maintenance of high standards of
performance, military discipline and readiness and is destructive of
Navy efforts to instill pride, promote professionalism, and enhance
personal excellence" [Ref. CNO].

With these concepts as guidelines, the Navy has determined that

routine urinalysis testing is the most effective means to detect and deter

drug abuse. Thus, every military unit throughout the Navy must

institute a mandatory Random Urinalysis Program.

2

B. HISTORY OF DRUGDOG SOFTWARE

In late 1987, this author attended a local university during off duty

hours at night, studying beginning programming in pursuit of a second

undergraduate degree. At that time, the idea came about to utilize these

programming skills to assist his squadron in the information processing

arena. The concept of developing Urinalysis software occurred during a

class project that involved a random number generator utilizing the

BASIC programming language.

1. DRUGDOG Version 1.0

The first iteration of the DRUGDOG software series,

DRUGDOG version 1.0, was a primitive, simple application. It was, in

fact, little more than a pure random number generator. It required the

Urinalysis Coordinator to enter two numbers: the total number of

personnel to be sampled, and the actual number of samples to be

selected. Thus, if the Urinalysis Coordinator desired 20 selections from

a roster of 300, the program would then print 20 random numbers

between 1 and 300.

At this point, the Urinalysis Coordinator would have to take

the command's numbered personnel roster and manually go down the

3

list, identifying those individuals who's number corresponded with the

random number produced by the program.

Although it was felt that this method of random selection was

superior to the classic "names out of the hat" or "roll of the dice" method,

it still involved significant administrative manual labor. Many isers of

this first version of DRUGDOG clamored for a new product that

incorporated features found in a true database system. In addition to

maintaining a personnel database, they desired a more comprehensive

set of printouts.

2. DRUGDOG Version 2.0

Early 1989 saw the second release of DRUGDOG, version 2.0.

This application was a complete overhaul from the previous version. It

had the characteristics found in most common Data Base Management

Systems (DT'?7S), including the ability to add, delete and modify

personnel records. Error-trapping was introduced during data field entry

routines. The selection module automatically provided the total number

of personnel in the database, and depicted the total percentage that any

given sample would yield. Alphabetic listings of the selected personnel

could be printed for distribution.

4

The user interface was carefully designed with a novice user in

mind. An online User's Guide and an online Trouble-shooting Guide were

particularly well received.

The cornerstone of the program was the random number

generator algorithm:

" Previous Seed:= RandSeed;

" Seed:= Multiplier * (Previous Seed) * MOD (2.0EE32)

Pascal programmers will recognize most of the above

pseudocode. RandSeed had been previously defined to be the number of

seconds that have elapsed since midnight, January 1st of the current

year. This is accomplished through an interrupt call to the DOS clock on

a personal computer to obtain the current time. Therefore, even systems

with the incorrect time would still provide the algorithm with the

necessary information. The Multiplier was set by Borland, International,

specifically for the Turbo Pascal language, version 5.0. The final

component allows full 32-bit arithmetic (2 to the 32th power) for the

seed to take on one full cycle.

5

3. DRUGDOG Version 2.1

This version of DRUGDOG repaired two system anomalies that

revealed the inexperienced programming skills of the author. One

scenario involved a user who had to delete a number of personnel at one

sitting (as when a month had elapsed since the last Urinalysis, and a

number of personnel had transferred in the interim). A logic control error

did not allow more than one record to be deleted when the user entered

the deletion routine. Therefore, even if the user "deleted" ten records,

only the tenth record was actually deleted. This bug forced users to enter

the deletion routine, delete one record, return to the Main Menu, then

repeat this cycle to delete all desired records.

A second insidious anomaly involved poor error-trapping. A

user could accidentally enter a "blank" in the Social Security Number

field. Although this data field checked for erroneous alphabetic

characters, "blanks" were not trapped. The problem was that the Social

Security Number also acted as the retrieval key for modifications and

deletions. Figure 1 depicts the Main Menu for DRUGDOG Version 2.1.

The purpose of this thesis is to use formal, structured software

development methodology to design and create a complete, fully

6

functional software package that could be used by every command

throughout the Navy to implement the Random Urinalysis program.

Figure 1 DRUGDOG 2.1 Main Menu

C. ORGANIZATION

Chapter II characterizes the general features of DRUGDOG version

3.0, and describes the scope of the application. Chapter III will review

the database application development methodology and provide an

overview of the development platform and environment. The definition,

requirements, evaluation, design and implementation phases will be

covered.

7

Chapter IV will discuss the tools and concepts behind the term

"fourth-generation languages", and their impact on software

development. For illustration, an overview of the 4GL environment used

in the development of DRUGDOG version 3.0 is provided. Chapter IV

concludes with a discussion of the more critical routines and modiules

within the code, with emphasis on the random number gene

algorithms and overall documentation.

Chapter V, Conclusions, will discuss the final software package and

lessons learned throughout system development. Appendices A through

D include sections on requirements documentation, data dictionary,

DRUGDOG version 3.0 application source code, and a user's guide.

8

II. DRUGDOG 3.0 SOFTWARE

Since the release of the last version of DRUGDOG, users from all

over the world have contacted the author with suggestions to improve

and enhance the software package. This chapter considers the

drawbacks of previous versions of DRUGDOG and examines some of the

user-suggested features to be incorporated in the new release.

This chapter provides a general overview of the desired features.

The Definition, Requirements, Evaluation, Design and Implementation

Phases are the subject of Chapter III.

A. GENERAL SOFTWARE ISSUES

1. Memory and Operating System Requirements

DRUGDOG version 3.0 will operate in the same environment

as its predecessor, DRUGDOG version 2.1. Therefore, it must operate

as advertised on IBM PC platforms (Intel 80x86 machines) utilizing MS-

DOS 3.x or higher. The software package will be a standard DOS

application as opposed to a Windows' program. Not all within the user

community have hardware platforms that can execute MS Windows T ,

9

even if their command owned a copy. Hardware considerations are

addressed in a later section.

Memory constraints dictate that the entire system must load

and operate within conventional memory as outlined in the MS-DOS

Reference Manual. After DOS and sundry device drivers are loaded, this

often amounts to less than 512K of random access memory. Use of

expanded or extended memory in the program is prohibited.

2. User Interface

Although DRUGDOG 2.1 had an interface that was

cosmetically successful, it lacked standardization. For example, the main

menu (previously depicted in Figure 1) utilized the function keys F1 - F6

for event handling. Other menus, however, utilized alphabetic "hot-keys"

to launch a particular routine. This was not a tremendous problem, but

rather was indicative of the lack of programmer training at the time.

Users want consistent color schemes and menu formats that are

easy to use and provide the novice with a sense of continuity in

navigating through the program. Most users desire either pull-down

menus or the popular "popup" menus with transparent shadows that

provide a three-dimensional effect. These menus should also have a

10

scrolling highlight bar to launch a particular menu item. "Hot-keys" are

still very desirable as an alternative method of menu item selection.

3. Context-Sensitive Help

Lack of online, "context-sensitive" help in DRUGDOG version

2.1 was an issue that was often brought up by the user community.

"Context-sensitive" help is a feature whereby the press of one key

(usually Fl) halts the application, and a series of related popup "help-

fields" explain that portion of the application. Although there was a

User's Guide that could be displayed on the screen from the main menu,

this was a poor substitute for users who prefer pressing the standard F1

Help key at any point throughout the program.

Users asked for extensive context-sensitive help on any future

release of DRUGDOG. They want full-page, comprehensive help on

every menu, menu item, data field entry, table and listing throughout

the program. If the help key is selected on a multiple-item menu, then

the help screen itself should have a scrolling list of menu items that the

user can select to read. These help screens should be "chained" together

such that the user can go from one help screen to another without having

to return to the underlying main screen.

11

Even with such an exhaustive and extensive system of online

help, users still desire to retain the ability to have the full User's Guide

available from the main menu, for either reading or printing.

4. Tables and Listings

A common complaint about early versions of DRUGDOG

involved the manner in which tables and listing were handled. For

example, users wanted the ability to scroll up or down a list of personnel,

utilizing either the keyboard arrow keys or the page-up, page-down keys.

They also wanted a highlight bar to "select" a personnel record for

modification.

A recurring request was the ability to filter the personnel data

file to display only those individuals who belong to a particular

department, division or workcenter. Previous versions of DRUGDOG

could only provide an alphabetic listing of the entire command.

A quick-find "locator" feature for searching for a record was

another frequent request. This feature entails a data entry field at the

top of a table or listing. The user enters the first few letters of an

individual's name, and the scrolling highlight bar immediately moves to

the name that matches this partial entry. For example, entering "WI"

in the locator field would automatically move the highlight bar to the

12

"WILSON" record. This is much more convenient than entering the

individual's entire social security number for record retrieval, as was

required in previous versions of DRUGDOG.

5. Report Generation

A significant criticism of DRUGDOG 2.1 was the Report

Generation module. Only two reports could be printed: an alphabetic

listing of all personnel in the database, and an alphabetic listing of

personnel selected for random urinalysis. Users felt that the inability to

process printed reports to conform with local requirements was a serious

drawback.

The most prevalent request was to allow listings to be printed

by Division or Workcenter. For large commands that conduct many

random selections per sampling period, the ability to print and distribute

Urinalysis listings by Divisions or Workcenter would eliminate a heavy

administrative burden on the Urinalysis Coordinator. Ideally, future

releases might also generate preprinted labels to be affixed to the urine

sample containers.

6. Program Installation

Finally, there were numerous requests to include a program to

install the system on a hard drive. Earlier versions of DRUGDOG either

13

had a simple batch file for hard drive installation, or none at all. This

was justified (at the time) due to Privacy Act considerations, and also

due to the very nature of the application. It was felt that it was more

secure to execute the program from a floppy drive, where the disk could

be removed and safeguarded from possible malicious tampering.

Many stand-alone personal computers, however, now

incorporate good ADP Security features that include multi-layer access

control. Therefore, an installation module would be an appropriate

addition to the next release of DRUGDOG. This module should have the

ability to install the application from either drive A or B, and have

meaningful error-trapping to ensure proper and successful system

installation.

14

HI. APPLICATION DEVELOPMENT

The five development phases used in the production of DRUGDOG

version 3.0 will be discussed in this chapter. The methodology of each

phase will be discussed followed by how that phase was applied in the

development process. Throughout the development cycle, significant

consideration was placed on the anticipated user community, with

particular emphasis on the following aspects of the user interface: [Ref.

SOMMERVILLE]

* The interface should use terms and concepts which are familiar to

the anticipated class of user.

* The interface should be appropriately consistent.

* The user should not be surprised by the system's characteristics.

* The interface should include some mechanism which allows users
to recover from their errors.

* The interface should incorporate an extensive system of user
guidance and context-sensitive help.

These objectives keep the focus on the most important element when

producing any software application: the users. End user needs must be

the overriding consideration throughout system development. This cannot

15

be overemphasized. If an Information System does not satisfy the end

user, than the intended objectives can not be met.

DRUGDOG version 3.0 fulfills these objectives. It was designed to

assist commands in managing their Random Urinalysis Program. It

provides the Command Urinalysis Coordinator a vehicle that can

automatically select a truly random list of personnel to undergo testing.

A. PHASE I: DEFINITION PHASE

1. Methodology

The purpose of the Definition Phase includes preliminary

activities with the major goal of determining what needs to be

accomplished. The development team must be formed, the scope of the

project established, and feasibility (in terms of cost, technical

requirements and time constraints) assessed.

2. Application

The goal of this thesis is to provide a fully functional system

application for automating and standardizing the Navy's Random

Urinalysis Program as outlined in OPNAV INSTRUCTION 5350.4

(series). Since it is an enhancement to an existing system, it was decided

that the scope of this work warranted development as an individual

16

thesis project. All feasibility issues were met satisfactorily.

Development would be performed on a 80386, 25 Mhz IBM-compatible

PC owned by the thesis student. This resulted in negligible cost. The

availability of various application development software owned by both

the Naval Postgraduate School and the thesis student eliminated another

cost. A time span of nine months with commencement in June, 1993 and

system completion by February, 1994 was considered feasible. With the

Definition Phase completed, the next step was to begin the Requirements

Phase.

B. PHASE II: REQUIREMENTS PHASE

1. Methodology

Identifying the objectives of the proposed system in detail is the

goal of the requirements phase. Requirements are the blueprint that will

be used to design and implement the new system. Before being able to

move on to development, the developer must know exactly what the

system is supposed to do. It is not only important that the system be

built correctly, but that the right system be built. Proper definition of

the requirements can prevent future maintenance trauma.

17

There are two major tasks in defining database requirements.

The first is to identify the objects. Objects are a collection of properties

which depict an item to be implemented in the database [Ref. Kronke]

These objects are most effectively identified by examining previous

versions of the application, and conducting a series of interviews with the

expected users. After initial interviews, a prototype may be built and

demonstrated to receive further user design input.

2. Application

Interviews commenced in June of 1993 with two perspective

beta-testers, who were selected based upon their substantial previous

experience with the Random Urinalysis Program. Interviews were also

conducted with the current Urinalysis Coordinator at the Naval

Postgraduate School.

The initial interviews lasted approximately three weeks.

Working with initial data requirements, a prototype DRUGDOG 3.0

application with sample input screen and reports was presented to the

users for review. Several suggestions and requests were presented and

discussed during the review. This cycle repeated itself several times over

the next three months. Fortunately, the selected development

environment contained a fourth-generation language (4GL) that was well

18

suited for recurring prototyping. The ample time schedule also allowed

for these constant changes.

a. Data Requirements

Prior to this discussion, it is appropriate to provide

definitions for terms used in describing the data requirements [Ref.

Kronkel. An object can be described as the constructs and conventions

used to create a model of the users' data. An object property is a property

(characteristic) of an object that is, itself, an object. An object definition

is a named collection of properties that sufficiently describes a distinct

identity. Finally, the domain of a property is the set of all possible values

the property can have.

The PERSONNEL object, as determined through the

interview/prototyping process, is shown in the Object Diagram, Table [11,

Appendix A. This is the single most important object in the system. The

central focus of this application involves randomly selecting these

"objects" for urinalysis.

The Department property is an object property, which

means that this entity characteristic is actually another object. The same

is true for the DIVISION and WORKCENTER objects. Additional

PERSONNEL object data information is supplied in Appendix A. Table

19

[2] provides the object definition which lists all of the object properties

and each property domain. Table [3] is the Domain definition which

specifies formats of each domain. Tables [4] and [5] depict the Display,

Update and Control Mechanisms. This information is used for the

database design in Phase IV.

b. Functional Requirements

Functions required by the DRUGDOG 3.0 software were

patterned after the previous version of DRUGDOG, version 2.1. These

functions include record entry, display, editing, deletion, and report

generation. Additionally, OPNAV INSTRUCTION 5350.4B was

meticulously scrutinized to ensure program compliance with this

governing directive.

The data flow diagram (DFD), Figure 2., depicts a graphic

model of the DRUGDOG system to be used as an aid in design. The

DFD is comprised of four elements: the data flow, represented by an

arrow, indicates data movement between a source and sink;the process,

represented by a circle, indicates data manipulation; the data store,

represented by an open ended rectangle, is data stored before or after

processing; and the source/sink, represented by a closed box, either

provides or receives the data.

20

PHASE I I
URINALYSIS DEP I IV W
COORDINATOR COORDNATOR

N/m QUOTA REUESTOTS

EDT ENTER RANDOM PRINT
RECORD NEW TESTING REPORTS

RECORD

REMREVAL
UPDATE VEIF PERS

INFO RNO

I
SELECTIONS

DRUODOG 3.0

Figure 2 Data Flow Diagram

c. Hardware Considerations

(1) Target Platform Because the predominate system

currently in fleet-wide use is the Zenith Z-248, it will be considered the

minimum platform for the DRUGDOG software package. The vast

majority of the Zenith Z-248 computers were distributed with a single

360K 5 1/2" floppy drive, and a 20 Megabyte hard drive. Therefore, to

execute the program from floppy disk only (due to ADP security issues),

21

a minimum requirement is that the entire DRUGDOG application,

including the DBMS, data, index, manual and help files, and the

installation program, be no larger than 360 Kilobytes in total size.

(2) Alternate Platforms Testing of the new version of

DR UGDOG will also be conducted on hardware that includes the Unisys

80386 systems procured under the Desktop III Contract. Experience has

shown that an application that behaves as advertised on an Intel 80286

PC with an EGA monitor (such as a Zenith Z-248), generallv behaves as

advertised on higher level machines such as those procured under

Desktop III (80386SX systems equipped with VGA graphics). Hardware

is not, however, the key issue in this generalization. The software

operating environment is often the culprit in what might otherwise

appear to be system incompatibility. Different versions of operating

systems, various memory managers and memory-resident programs are

all a potential source of unexpected results. In the next section, we

discuss Phase III of the development process, the Evaluation Phase.

22

C. PHASE I: EVALUATION PHASE

1. Methodology

Using the information gathered during the Requirements

Phase, this development stage typically consists of an evaluation of

several items of concern to both the developer and the customer. During

evaluation phase, the application development architecture is chosen,

user requirements reexamined, and feasibility reassessed. The

evaluation phase allows the end user and system designer to meet again

to ensure user needs are satisfied. Detecting design flaws or revising

requirements needs to be identified in the early stages. Significant

savings in time and money will be realized if corrections are made before

the implementation phase.

2. Application

The software selected for developing the application was the

Clarion Professional Developer, version 2.1. This system is designed for

developing high-quality business application programs for

microcomputers. In evaluating prospective application development

platforms, Clarion was selected due to its 4GL programming strengths.

Some of these strengths are described below.

23

In Clarion, support for screens, reports and files is built-in, not

supplied as a toolbox. It allows the design of versatile screen structures.

A screen layout can be a window. When a window is opened, it "pops-up"

on the video monitor; when it is closed, it disappears. A help window can

be tied to a field, making context-sensitive help windows a natural part

of the development process.

The real benefit of screen declarations is provided by the screen

formatting capability of the 4GL's Editor. Editor's Screen Formatter

copies a screen structure, displays the screen layout, accepts changes

from the keyboard/monitor, and replaces the screen structure in the

source program. Screens can be created and maintained indefinitely,

thereby supporting code reusability.

User requirements were refined through interviews with the

two perspective beta-testers, and the current Urinalysis Coordinator at

the Naval Postgraduate School. Discussions were also held with

Professors Schneidewind and Short, co-advisors of this thesis. A

thorough examination of user needs was completed before advancing to

the next phase.

A complete review of the evaluation phase minimizes user

dissatisfaction and reduces the number of changes that must be made

24

after the system is built. The outcome of the evaluation phase resulted

in a set of finalized user requirements that would be technically feasible

using the selected development platform. The data model was refined to

reflect these changes. With this improved set of definitive requirements,

the evaluation phase was completed. The Design Phase is discussed in

the next section.

D. PHASE IV: DESIGN PHASE

1. Logical Database Design

In the design phase the logical model is translated into specific

data structures and relationships. The semantic object model was

revised to reflect these data structures. Each property of an object is an

attribute to the relation. Logical database design is generic; specific

design requirements for programming in the Clarion 4GL will be covered

in the Physical Database Design section. The requirements determine

what is wanted from the system and the design determines how to

accomplish those goals. Logical design plans developed from the object

diagrams and object definitions consists of relation diagrams, relation

definitions and the constraints on the relations.

25

The PERSONNEL object was transformed into the

PERSONNEL relation as depicted in Figure 3.

WORKCENTER

WLG Workcenter
code name

PERSONNEL %

.SS BLast Name Initialsj Rate Div . . . WiC

DIVISION
DiV Division

eae

Figure 3 Personnel Relation Diagram

The PERSONNEL relation uses an individual's social security

number as its primary key. (This is not, however, the key used in the

r. om selection process, which is discussed in Chapter IV.) A key is an

attribute that allows the non-key attributes to be entered and retrieved

from the object. The PERSONNEL relation is related to the

WORKCENTER relation in a one-to-many binary relationship. The "fork"

at the WORKCENTER end of the relationship line means that there are

26

potentially many personnel for each workcenter within the

WORKCENTER object. The absence of a fork at the other end indicates

that each personnel can be assigned to at the most, one workcenter at

any one time. The circle on the line means that the relationship from

PERSONNEL to WORKOENTER is optional. A WORKCENTER does

not have to have any personnel assigned to it. (This is to create a

"dummy" workcenter for the random generator algorithm, as discussed

in Chapter IV.) The bar at the other end indicates that a PERSONNEL

record must correspond to a WORKCENTER record. DIVISION is linked

to PERSONNEL in much the same manner.

The relational database model is based on the concept that the

data is stored in two-dimensional tables referred to as relations. Each

row in the table represents a record. Each column represents a field. The

entire table (relation) is what is known roughly as a file. Normalization

can be defined as the process of evaluating a relation to determine if it

is in a specified normal form, and if necessary, converting it into

relations that are in that specific normal form [Ref. 11. This

normalization process is handled internallyby the 4GL compiler. It

ensures no insertion, deletion or modification anomalies can exist,

leaving all relations in the (DK/NF) Domain Key/Normal Form.

27

2. Physical Database Design

This stage of the design phase will transform the logical

database into a physical design of the specific data elements that are

required for programming the application with the Clarion 4GL. Each

field must also be categorized as one of eight general data types allowed

by Clarion:

1. BYTE - one-byte unsigned integer, 0 to 255.

2. SHORT - two-byte signed integer variable in Intel 8086 word
integer format. Range is from -32,768 to 32,767.

3. LONG - four-byte signed integer variable in Intel 8086 short
integer format. Nag.tive numbers are represented in standard
two's complement notation.

4. REAL - eight-byte floating point variable in Intel 8087 long
real (double precision) format.

5. DECIMAL - variable length packed reals, each byte holding
two decimal digits.

6. STRING - fixed-length character string up to 255 characters
long.

7. GROUP - construct that allows multiple consecutive variables
to be reformed as a group by a single variable name. GROUPS
help organize complicated programs by keeping related data
together.

8. EXTERNAL - specifies a parameter of a procedure or function
that is "passed by address". Attributes of EXTERNAL permit
arrays, screens, reports, files, keys, and tables to be passed as
parameters.

28

With the exception of DECIMAL, all of the above data types

were utilized in the development of DRUGDOG version 3.0. This 4GL

has a rich set of data types. A language rich in data types, however,

ought to be intelligent in dealing with them. A mixed expression should

not need a conversion function to multiply a BYTE by a SHORT

producing a LONG. The compiler knows the data types; that is why they

were declared. Therefore, a variable of any data type can be moved or

added to a variable of any other data type without conversion functions

or cast directives. Table [6] in the Data Dictionary (Appendix B) lists all

DR UGDOG data file elements in proper format.

3. DRUGDOG 3.0 Application Design

The implementation of this application is the collection of

menus, forms, reports, and programs that perform the functions of the

system required by the users. Before proceeding to the Implementation

Phase the final task is to design the application. Once the basic designs

for DRUGDOG 3.0 (Appendices A and B) were determined, a quick

prototype was developed to demonstrate the menus, input form screen,

and reports to the users. User-requested modifications to the prototype

were incorporated to form the final application design.

29

a. Menu Design

Since the development of DRUGDOG version 3.0 was an

enhancement (albeit a substantial overhaul) to an existing system

already in use, it was decided to follow the current structure in designing

DRUGDOG 3.0 menus. This would allow easier program integration in

the implementation phase and ease the user transition to the new

system. The menu hierarchy design is illustrated in Figure 4.

The main menu features six main options, four which have

their own "pop-up" menus for option selection. The menus feature a

scrolling highlight bar which determines option selection. Alternatively,

the first letter of any menu item serves as a "hot-key" to launch that

item. These sub-menus maintain the same "look and feel" as the main

menu, which gives users a sense of continuity in navigating through the

menu hierarchy.

The standard F1 "help" key can be pressed at any menu

for a complete explanation of menu options. All pop-up menus have

translucent shadows that lend a graphical three-dimensional effect to the

interface.

30

MAIN MENU

Uriuyis IREPORTS1 ROSTER IIUTILITIES MAUA

i - i
USTS IPERSONNELBAUP RINE

COMMAND DEPT OMIN WIC EXIT

Figure 4. DRUGDOG Menu Hierarchy

b. Screen and Table Design

Variations in the screen layout design can either ease or

hinder system use. Screen design begins with determination of the

information and fields that will be placed on the screen and then

effectively designing the arrangement so that the data will fit within the

screen limitations.

A unique design for the record entry form was developed

as a result of user requests during prototyping. The Roster Maintenance

31

option from the main menu allows a scrolling table of personnel to be

displayed. This table can be "filtered" such that only personnel from a

particular workcenter, division or department are displayed. A highlight

bar can be positioned on an individual record. If the user then presses

<RTN>, the record edit form automatically pops up, allowing instant

record modification to occur. After the record is modified, data from

linked relations are automatically updated as well.

Another characteristic of a good interface is the use of

varying colcrs as a means to convey information. Input forms were

designed utilizing an eye-catching bright white on red background. Each

individual input field, however, was highlighted utilizing a bright yellow

on black color scheme. This alerts the user to which field is currently

being edited. As with the menus, all input forms are popup windows

with translucent shadows. Figure 5 illustrates a typical record

modification interface.

32

Figure 5 DRUGDOG Input Form

c. Report Generation

The earlier versions of DRUGDOG allowed for only two

types of printed reports: an alphabetical listing of the entire command,

and an alphabetical printout of a given random urinalysis sampling.

Users requested the ability to print out both the entire roster or any

given random selection using any one of three filters: by Department, by

Division, or by Workcenter. This allowed large commands with sizable

quotas to print and distribute random urinalysis listings in a

compartmentalized manner, eliminating wasteful redundancy in paper

cost and wear and tear on the command's copying machine. Finally, the

33

last development phase, the Implementation Phase, is discussed in the

next section.

E. PHASE V: IMPLEMENTATION PHASE

1. System Programming

Constructing the system in accordance with the design is the

fundamental task of implementation. Breaking large application

programs into smaller source modules usually creates problems. First,

every label used but not declared in a module must be designated as a

global where it is declared, and as an external everywhere it is used.

Second, when a module is compiled, it must be linked with the other

modules before it can be tested. Third, link errors often sends one

searching through modules looking for unresolved global references.

To solve these problems, an application consists of a program

module and optional member modules. All global data is declared in the

program module. If a member module has global references, it names the

program where they are declared, not the label of every label used. For

a member module, the compiler reads the program module's symbol table

and "compiles in" the global addresses, allowing testing without linking.

34

A program containing member modules, procedures or functions

must have a map structure naming them. When a program module is

changed, the member modules in the map structure are "stream

compiled". A stream compilation compiles the program module, then

compiles each member module to correct its global references.

The 4GL's Processor utility program is used to test and debug

programs. It loads the compiled modules and executes them. The

interactive debugger allows one to view and change variables, set break-

points, trace, single-cycle, and jump around a program, all without

recompiling. When testing is completed, the 4GLs' Translator utility

program produces standard object modules from the compiled modules.

The object modules are linked with the 4GL's library to produce a

standard .EXE program that can be executed from DOS.

2. Testing

Each section of the system was thoroughly tested for correct

function using a black box testing procedure. Black box testing is a

testing method where inputs are provided to the system with subsequent

examination of the outputs to ensure the systems overall function is as

advertised. Black box testing attempts to find errors in the following

categories: [Ref. PRESSMAN]

35

1. Incorrect or missing functions and interface errors

2. Errors in data structures or external database access

3. Performance errors

4. Initialization and termination errors

This testing method does not concern itself with internal functions,

rather it checks the correctness of the system as a whole. This is

particularly well suited for an application developed with a 4GL such as

Clarion. The vast majority of the code is generated using DESIGNER,

the main module of the Clarion developer platform. DESIGNER takes

developer menus, tables, reports, files, keys, and constructs an

application template. It then generates (syntax) error-free source code,

including comments. Relations are extensively tested and put in the

Domain Key / Normal Form to ensure there are no addition, deletion or

modification anomalies. Entry fields are automatically error-trapped to

only allow correct alpha-numeric input.

Approximately 140 fictitious test records were entered into the

system with no discrepancies. Over 100 random selection runs were

performed. There were no discernable patterns in the random selections.

A group test (comprised of the "beta-testers, developer, and prospective

36

users) was the last stage to see if there were any final functional

problems that the programmer may have overlooked. The group agreed

that the system appeared to work as advertised.

3. Installation

The last stage of the Implementation Phase is installation.

There are four primary methods to install a new system. Two are the

"pilot" and "phase-in" methods, neither of which apply here. A third is to

completely abandon the old system and simply use the new one. The

fourth method is to run parallel systems until the new system is fully

integrated into the organization. The latter is often the preferred

method until users have learned the new system and have confidence

that it is reliable.

Distribution of the system will be similar to the previous

version of DRUGDOG. The entire package will be made available to the

Department of Defense via the Naval Computer and Telecommunication

Stations' (NCTS) electronic Bulletin Boards (BBS). It will be in a

compressed format utilizing PKZIP compression utilities. Once a

command downloads and "unzips" the DRUGDOG package, the

installation program DDINSTAL.EXE (which accompanies the

application) will install the complete system from any floppy drive onto

37

drive. The sample roster that is included will allow the user to

immediately experiment with the application.

The following chapter examines the impact that fourth-

generation languages (4GL) have had on software development. To

illustrate these concepts, an overview is provided of the 4GL used in the

development of DRUGDOG 3.0.

38

W. DEVELOPMENT ENVIRONMENT

This chapter examines some of the more interesting aspects that

fourth-generation languages (4GL) have brought to the software

development arena. There has been much press in recent years on how

4GLs have helped "revolutionize" software development. It can be argued

that there are as many definitions of a 4GL as there are people to define

them. Yet, there are certain concepts or features that are usually

common. To illustrate these concepts, the Clarion Integrated

Development Environment (IDE) will serve as an example 4GL, with

emphasis on the main development modules that comprise the IDE.

The chapter concludes with a brief discussion of the coding of

algorithms that are at the heart of DRUGDOG version 3.0. As with

many fourth-generation languages, Clarion generates much of its own

source code. However, several of the more critical modules had to be

"hand-coded". These include the logical and physical random selection

process, and mechanisms that prevent duplicate random selections.

39

A. FOURTH GENERATION LANGUAGES

The term "fourth-generation language" (4GL) encompasses a broad

array of software tools that have one thing in common: each enables the

software developer to specify some characteristic of software at a high

level. The tool then automatically generates source code based on the

developer's specification. Since the early 1980s, the software industry has

used the term 4GL to describe varying types of productivity tools.

Three classes of 4GLs have emerged in recent years: end-user tools,

application developer facilities, and tools that emerged from relational

DBMS products. However, the boundaries between these classes are

growing fuzzier. These languages offer major productivity improvements

over third-generation languages (3GLs) such as Cobol, Fortran or PL/1.

Faster hardware, alternative platforms, distributed architecture and

improved software performance have eliminated many earlier efficiency

concerns about the performance of fourth-generation languages for large,

complex systems [Ref. Weitz}.

The major characteristic of a 4GL is that the tool should enable

users to develop applications at a rate several times faster than a 3GL

would for that same application. These sets of tools include some or all

of the following [Ref. Rinehart, Weitz]:

40

" nonprocedural languages for database query

" report generation

" data manipulation

" screen interacter and definition

" code generation and compiling

" high-level graphics capability

" integrated development platform

Most 4GLs feature a nonprocedural language. This means that the

user specifies what to do, but not the details of how to do it. The

language is also at a higher level of specification than 3GLs, which

translates into significantly less code. [Ref. Rinehart]

4GLs must offer facilities for complete application development,

rather than addressing only a piece of it. Many products are available

today for building graphical front ends to applications that run in

client/server environments. However, since these tools only address the

front end or user interface, they are not considered the full-function 4GLs

such as the one used for development of DRUGDOG.

Prototyping methodologies became popular in the early 1980s

concurrent with the acceptance of 4GLs [Ref. Weitz]. Prototyping and

41

4GL development work well together. The 4GL code is easy to modify

and refine until it satisfies the users' requirements and becomes the

production system. Throughout the development of DRUGDOG 3.0, the

4GL's rapid prototyping capability proved the critical feature that

allowed application completion within the given deadline.

To illustrate the above discussion, the following section describes

how Clarion, the software selected for the development of DRUGDOG,

fits within this 4GL category through a examination of its development

environment. Many of the issues and concepts presented above are found

within the description of each utility tool.

B. INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

Most 4GLs provide some variant of an integrated, interactive

program development environment. To the programmer, a seamless,

full-function int --grated development environment is considered a critical

feature of a . L. This environment provides utility programs that

greatly simplify the common tasks one does as a programmer, such as

creating custom screens, help windows, data files, and reports. Each

utility program also features context-sensitive help windows that provide

reference information and facilitate error correction. Figure 6 depicts the

Main Menu of the Clarion IDE. While running under this environment,

42

Clarion keeps track of the source code files that are currently in work

and passes them to each utility.

Figure 6 Clarion Main Menu

1. DESIGNER Utility

The Designer utility is the heart of the Clarion IDE. It can be

considered the main application development and prototyping tool. It

produces source code that is free of syntax errors, based on the files,

screens and reports that a programmer designs. This module also

produces all the "connecting logic" that actually makes the program

complete. In fact, depending on how sophisticated an application is, one

43

may be able to create the entire application using only Designer.

Typically, the utility is used in one of three ways:

" It can be used to create fully functional application programs. It can
be used to create a wide range of business oriented applications,
from simple mailing list to a hard-core order
entry/inventory/invoicing program.

a It can be used to prototype an application or as a "first step" in
application development. It can develop the template or "shell' of a
program, then the Editor can be used to hand-code any unique
features desired. This was the method employed in the development
of DRUGDOG 3.0.

" It can be used to create a program "frame" that includes special
hooks to pull in existing Clarion, C/C++, or Assembly language
procedures.

Designer's Application Summary window provides an instant picture

of the current state of the design of an application. It illustrates the

relationship of the various procedures of the application and their

current status. Figure 7 depicts part of DRUGDOG 3.0's Application

Summary window.

44

im 1V

Figure 7 DRUGDOG 3.0 Application Summary Window

2. EDITOR Utility

A 4GL's editor is used to "hand write" source code that can not

be created using the code generator described above. The Clarion Editor

has three parts: a Source Editor, a Screen Formatter, and a Report

Formatter.

" Source Editor is used to write and edit Clarion source code, to
modify the source code generated by the utility, and to locate and
correct errors identified by the 4GL's compiler.

* Screen Formatter is used to create and format screens and to
generate the source code for screen structures. It can also modify

45

existing screen structures created by the Screen Formatter or with
the utility.

Report Formatter is used to create and format printed reports the
application performs and to generate the source code for these
reports. It can also modify existing report structures created by
either the Report Formatter or Designer.

The Editor is a full-screen, ASCII line editor. In addition to

traditional editing functions, it also has a number of labor-saving

features. For example, it can define keyboard macros, set automatic

indentation, restore deletions, and edit text in one column without

affecting the position of adjacent columns. It can also edit two files

simultaneously, allowing the exchange of data between the active file and

the inactive file.

3. COMPILER Utility

The Compiler utility reads the Clarion source code and

translates it into compact, high-level pseudo-code. This pseudo-code, in

turn, is read and executed by the Processor. As the Compiler reads the

source code, it detects and lists any errors. The errors can then be

displayed in the Editor, enabling one to make corrections before

processing. The Compiler offers a fast and efficient way to compile all of

the modules of a program in a single pass. Stream compiling, which is

necessary only when global variables have been changed, proceeds

46

quickly because the Compiler and the global symbol table need to be

loaded only once. The Compiler produces an optional program listing

with page titles, subtitles, and line numbers. The listing also displays

the depth of the nested logic within the program.

4. PROCESSOR Utility

The Processor utility is used to load and execute the processor

files generated by the Compiler. It generates a processor file for each

PROGRAM module compiled, as well as any MEMBER modules

belonging to that PROGRAM. The processor can than "run" the program

as if it were a regular .EXE file.

During program execution, the programmer can access an

interactive Debugger by pressing Ctrl-Break at any time. This Debugger

allows the programmer to view and change the current value of up to six

program variables simultaneously. The Debugger allows the programmer

to trace the progression of the programs logic, to specify break-points,

and to step through a program at the line-by-line source code level. This

utility was employed extensively during the development of DR UGDOG

3.0.

47

5. TRANSLATOR Utility

The Translator utility is usually the last step in the creation of

a standalone executable program. Typically, the program has been tested

and debugged prior to translation. The Translator produces relocatable

Intel 8086 native-code object modules from the processor (.PRO) and

symbol (.SYM) files of the compiled program. These translated object

modules, which have the extension .OBJ, can then be linked with the

4GL's Run-Time Library to produce an executable program with an .EXE

extension. Although the .OBJ modules can be linked with any linker

supplied by DOS 3.3 or higher, Clarion also includes the high-quality

grade linker PLINK86plus, which has the advantage of supporting

overlays for large programs.

C. RANDOM SELECTION CODING

As discussed above, there are often times that special functions or

procedures required for a given program can not be accomplished using

the 4GL's code-generator alone. These modules must be "hand-coded"

using the Editor. Such was the case in the development of DR UGDOG

3.0 when it came to the actual Random Urinalysis Selection module.

Fortunately, the Clarion language has a built-in function under the

Mathematical Functions section called RANDOM(low, high). The

48

RANDOM() function generates a random integer between the low and

high parameters inclusively (therefore including the endpoints). The low

and high points can be any numeric expression, but only their integer

portion is used to form the inclusive range. The return value is a long

integer, which turned out to be exactly the data type needed as the

algorithm progressed.

1. Random Number List Generation

As previously mentioned, the random function requires two

parameters. For its employment in DRUGDOG, the low parameter

would always be 1 (obviously there will never be a need to select zero or

less personnel for urinalysis testing). The high parameter will always be

the total number of personnel in the database at the time the urinalysis

test is conducted. Clarion provides an internal function called

RECORDS() that returns the total number of records (of personnel) in

the database in a variable called TOTAL_RECS. Appendix C lists the

resulting source code. Basically, this module can be described as follows:

A simple loop from one to QUOTANUMBER (which was

previously obtained from the Urinalysis Coordinator) fills an array of

long integers called QUOTAHOLDER[]. A "nested" loop then compares

each newly selected random number with all previous random numbers

49

in the array. If a duplicate number is detected, then the duplicated

number is deleted, the loop counter is reset to compensate for the loss,

and the outside loop continues as before. This cycle is repeated until the

entire array is filled with non-repeating, randomly selected numbers.

2. Physical Record Selection

Now that an array of random numbers is available, the actual

selection of personnel is described as follows: a "GET" statement uses the

individual random number as a record "pointer" to pull the record that

physically resides at the "address" provided by the pointer. That record

is then copied into a temporary record holder (RAN:RECORD) and is

added to a new (Urinalysis) data file called RANDFILE. This cycle is

repeated until the array of random numbers is exhausted.

This manner of random selection is independent of any external

influence other than the desired QUOTA number that the Urinalysis

Coordinator provides. Selections are based on the physical location of the

records, which are constantly being changed in the normal course of

record deletions, additions, and file re-indexing.

50

V. CONCLUSIONS

The purpose of this thesis was to provide a complete, fully functional

software package that could be used by every command throughout the

Navy. Although the Navy's mandatory Random Urinalysis Program has

been in effect for over a decade, there has never been a formal,

standardize methodology to implement the process. OPNAV

INSTRUCTION 5350.4 (series) provides guidance on what must be

accomplished, but not how to accomplish it. The automation and

standardization of the process through software lends confidence to

personnel who are subject to the program that it is fairly and uniformly

applied to each member of the command.

Since the author developed previous versions of the Random

Urinalysis application known as DRUGDOG, commands from all over the

world who have acquired and implemented the software have called for

an updated version to incorporate various features and enhance

flexibility. These features were discussed in Chapter II. The reason for

such a substantial number of requests was due largely to the lack of

51

formal, structured approach to software development in these early

versions.

To implement user requests, the author utilized the formal software

development techniques as taught throughout the Information

Technology Management curriculum at the Naval Postgraduate School.

The five main development phases include the Definition, Requirements,

Evaluation, Design and Implementation Phases. These phases were

examined in great detail in Chapter III.

Figure 8 DRUGDOG version 3.0 Main Menu

52

It was decided that a modern fourth-generation language would

serve as the development environment. Fourth-generation languages are

renown for their advantages over the more traditional programming

languages, particularly in the area of rapid prototyping. The Clarion

Professional Developer, version 2.1, was selected as the development

platform. Clarion is designed for developing commercial-quality business

application programs for microcomputers. The concepts of 4GLs in

general and the Clarion Professional Developer in particular are the

subject of Chapter IV.

DRUGDOG version 3.0 is the result of this study. It is a

comprehensive software application that will greatly aid individual

Urinalysis Coordinators in implementing the Navy's Random Urinalysis

Program within their command. A hard drive installation program

accompanies the package for those commands where ADP security allows

the program to reside and operate from the hard drive. An exhaustive set

of context-sensitive help screens and a complete, on-line user's manual

will make DRUGDOG easy for even the computer neophyte to the use.

The final product of this thesis provides an actual working tool for the

fleet.

53

APPENDIX A

REQUIEMENTS DOCUMENTATION

A. TABLE 1: SEMANTIC OBJECT DIAGRAM

PERSONNEL

NYam

ISS1 Nm
R-

D ~A ~

WRCENTR DIVISION

Code Code

Name Name

= Oject Property MV =Multi Val ued

54

B. TABLE 2: OBJECT DEFINITIONS

PERSONNEL OBJECT

Last-Name; Personnel-last-name

First_Name; Personnel-first-name

SSN; Personnel-SSN

Rate; Personnel-Rate

WORKCENTER; WORKCENTER object

DIVISION; DIVISION object

DEPARTMENT; DEPARTMENT object

WORKCENTER OBJECT

Code; Workcenter-Code

Name; Workcenter-Name

DIVISION; DIVISION object

PERSONNEL; PERSONNEL object; MV

DEPARTMENT OBJECT

Code; Department-Code

Name; Department-Name

DIVISION; DIVISION object

WORKCENTER; WORKCENTER object; MV

DIVISION OBJECT

Code; Division-Code

Name; Division-Name

WORKCENTER; WORKCENTER object; MV

DEPARTMENT; DEPARTMENT object

55

C. TABLE 3: DOMAIN DEFINITIONS

Personnel-Last-Name:
Text 20
Last name of individual personnel

Personnel-First-Name:
Text 15
First name of individual personnel

Personnel-SSN:
Numeric 11, mask NNN-NN-NNNN
Social Security Number of individual personnel
Mandatory Privacy Act compliance

Personnel-Rate:
Text 6
Military rate of individual personnel

Workcenter-Code:
Text 3
Unique code for each workcenter

Workcenter-Name:
Text 12
Formal name of a Workcenter

Division-Code:
Text 3
Unique code for each Division

Division-Name:
Text 10
Formal name of a Division

Department-Code:
Text 3
Unique code for each Department

56

Department-Name:
Text 10
Formal name of a Division

D. TABLE 4: PERSONNEL UPDATE MECHANISMS

A. Add new PERSONNEL data
1. Inputs

* Listing of new personnel from Workcenter LPO
2. Outputs

* New PERSONNEL object instance in database
3. Processing notes

* Workcenter data may not be available upon checkin
4. Volume

* Up to 3000 personnel
5. Frequency

* Ongoing basis

B. Delete PERSONNEL data
1 Inputs

* Listing of personnel to delete from LPO
* PERSONNEL objects in database

2. Outputs
*Confirmation on screen

3. Processing notes
Backups of PERSONNEL data should be made prior to
record deletion.

4. Volume
* Approximately 10 to 20 personnel depending on

command size
5. Frequency

* Delete monthly

C. Modify PERSONNEL data
1. Inputs

* PERSONNEL object instance from database
* Includes properties of WORKCENTER object

2. Outputs
* Modified object instance to database

57

* Confirmation on screen

3. Processing notes
* This function changes properties of PERSONNEL

4. Volume
* Up to 3000 personnel

5. Frequency
* Weekly/Monthly

E. TABLE 5: PERSONNEL DISPLAY AND CONTROL
MECHANISMS

A. Query on PERSONNEL
1. Output description

* Form that shows all pertinent data on personnel
2. Source data

* PERSONNEL object
* Personnel name keyed by Urinalysis Coordinator

3. Processing notes
* Used by Urinalysis Coordinator

4. Volume
* Command-driven

5. Frequency
* Weekly

B. PERSONNEL Reports
1. Output description

* Report showing PERSONNEL data
2. Source data

* PERSONNEL object
* Personnel name or SSN keyed by Urinalysis Coordinator

3. Processing notes
* Used by Workcenter Urinalysis Coordinator

4. Volume
* Command-driven

5. Frequency
* As required

58

C. PERSONNEL Control Mechanisms

1. Access
* Provide password system to ensure that only the
Urinalysis Coordinator can execute the system

2. Procedures
* Establish local procedures to ensure accuracy and
integrity of PERSONNEL objects in data store

59

APPENDIX B

DATA DICTIONARY

A. TABLE 6: DRUGDOG.DAT DATA ELEMENTS

ELEMENT TYPE WIDTH DESCRIPTION

LastName Char 20 Personnel's last name

Firstname Char 15 Personnel's first name

SSN Long 9 Social Security Number

Rate Char 6 Military service rating

WorkCenter Char 10 Name of workcenter

Div Char 10 Name of division

Dept Char 10 Name of department

Quota Long 3 Number of desired selections

TotalRecs Long 5 Total size of command roster

60

B. TABLE 7: DRUGDOG SYSTEM VIEWS

1. Display of Total Personnel

View File: DRUGDOG.DAT

Data Elements: Last-Name, FirstName, SSN, Rate,
WorkCenter

Description: All personnel records can be browsed via a highlight
bar in ascending alphabetical order. Records can be selected for
deletion or modification by placing the bar on the desired record and
pressing <RTN>. A new record can be added by pressing the insert
key <INS> at any point during browsing. All tables are designed in
the same manner, with the same commands available.

Example:

61

2. Record Addition/Modification Form

View Files: DRUGDOG.DAT, SHOWFORM.CLA

Data Elements:LastName, FirstName, SSN, Rate,
WorkCenter, Division, Department

Description: All data fields can be modified using this form.
It is identical for all browse tables.

Example:

62

. m n i

3. Display of a Random Urinalysis Selection

View Files: DRUGDOG.DAT, URINTABL.CLA

Data Elements:LastName, FirstName, SSN, Rate,
WorkCenter

Description: This displays personnel selected for Urinalysis.
This table is read-only; no modifications
are allowed.

Example:

63

C. TABLE 8: DRUGDOG REPORTS

1. Urinalysis Listings

Reiport Files: DRUGDOG.DAT, SHOWRAND.CLA

Data Elements:Last Name, FirstName, SSN, Rate

Description: This report prints those personnel who were
selected for Urinalysis. They can be printed by Workcenter,
Division or Department order. A blank line is provided for
member signature.

Example:

March 1994 Urinalysis List for WorkCenter 020

Name Rate SSN Signature

Archry, David AT3 183732788_______

Bena, Brian AME2 184796767_______

Farver, Mike AMH1 867938047_______

Hanigan, Fred LCDR 903758288_______

Tracks, Jerry AN 957436332 _______

Vavra, Frenando AD3 773732788 _______

64

Roster Listings Report Files:DRUGDOG.DAT, ROSTER.CLA

Data Elements:LastName, FirstName, SSN, Rate,
options: Workcenter, Div, or Dept

Description: This report prints alphabetic lists of all
personnel in the command. They can be printed by Workcenter,
Division, or Department. These are used to ensure the database
is current.

Example:

March 1994 Command Roster for Aircraft Division

NAME RATE SSN WORKCENTER

Archry, David AN 183732788 Powerplants

Bena, Brian AME2 184796767 Seat Shop

Farver, Mike AMH1 867938047 Airframes

Hanigan, Fred LCDR 903758288 A/C office

Tracks, Jerry AN 957436332 Airframes

Vavra, Frenando AD3 773732788 Powerplants

65

APPENDIX C

DRUGDOG 3.0 SOURCE CODE

DRUGDOG PROGRAM
INCLUDE('STD - EYS.CLA)
INCLUDE('CTLcIEYS9.CLA')
INCLUDE('ALT..KEYS.CLA')
1NCLUDE('SHf~KEYS.CLA')

REJECT-.KEY EQUATE(CTRL..ESC)
ACCEPT-KEY EQUATE(CTRL-ENTER)
TRUE EQUATE(1
FALSE EQUATE(O)

MAP
PROC(G-OPENFILES)
PROC(G-OPENFILES2)
MODULE(DRUGDOO1')

PROC(MAINMENU) !USN Random Urinalysis Program

MODLJLE('DRIGDO02')
PROC(SHO 'TNAME) !Show Drugdog By Lastname

MODULE(DK, A)003')
PROC(UPDJ)RUGDOG) !Update Dnigdog

MODULE(DRUGDO04')
PROC(PERS,_MENEJ) !Personnel Roster Maintenance

MODrJLE'D'RUGDO05')
PROC(SHO-.DEPT) !Show Drugdog By Department

MODULE('DRUGDOo6')
PROC(SHODIV) !Show Drugdog By Division

MODULE(TRUGDOO7')
PROC(SHO..WORKCENT) !Show Drugdog By Workcenter

66

MODULE('DRUGDOO8')
PROC(OBTAflLDEPT) !Obtain desired Dept for filter

MODULE(CDRUGDO09')
PROC(QUOTA) !Quota for Random Urinalysis

MODULE(VDRUGDO1O')
PROC(PRINT..RPT) !Report Generation Menu

MODULE('DRUGDO11')
PROC(GET.J)ATAFILE) !Obtain data file to display

MODULE(1)RUGDO12')
PROC(SHOW...RANDS) !Show Urinalysis Listing

MODULE(TRUGDO13')
PROC(SHOW-NEWLIST) !Show Urinalysis Listing

MODULE(I)RUGDO14')
PROC(OBTAINDWV) !Obtain desired Div for filter

MODULE(QDRUGDO15')
PROC(OBTAINLWC) !Obtaini desired W/C for filter

MODULE(TIRUGDO16')
PROC(PRT..RANDS)

MODULE ('RUGDO17')
PROC(PRT-ROSTER)

MODULEQREAD..MAN')
PROC(MANUAL) MDisplays User's Guide

MODULE('GET..RAND')
PROC(GETRAND) !RANDOM SELECTION PROCESS

MODULE(PRESS')
PROC(PRESS) !lKEYSTROKE DELAY

EJECT(TILE LAYOUTS')
DRUGDOG FIIJE,PRE(DRU),CREATE,RECLAIM
BYLASTNAME KEY(DRU:LASTNAME),DUP,NOCASE,OPT
BYDEPT IKEY(DRU:DEPT,DRU:LASTNAME),DUP,NOCASE,OPT
BY DIV KEY(DRU:DlV,DRU:LASTNAME),DUP,NOCASE,OPT
BY-WORKCENT IKEY(DRU:WORKCENT,DRU:LASTNAME),DUP,NOCASE,OPT
RECORD RECORD
FIRSTNAME STRING(15)

67

SSN LONG
DEPT STRING(10)
DIV STRING10)
WORKCENT STRING(10)
RATE STRING6)
LASTNAME STRING(20)

TEMPRAND FILEPRE(TEM),CREATERECLAIM
BYLASTNAME KEY(TEM:LASTNAME)DUPNOCASE,OPT
BY-DEPT KEY(TEM:DEPT,TEM:LASTNAME),DUPNOCASE,OPT
BYDIV KEY(TEM:DIV,TEM:LASTNAME),DUPNOCASE,OPT
BYWORKCENT KEY(TEM:WORKCENTTEM:LASTNAME),DUP,NOCASE,OPT
RECORD RECORD
FIRST-NAME STRING(15)
SSN LONG
DEPT STRING(10)
DIV STRING(10)
WORKCENT STRING(10)
RATE STRING(6)
LASTNAME STRING(20)

EJECT('GLOBAL MEMORY VARIABLES')
ACTION SHORT !0 = NO ACTION

U = ADD RECORD
!2 = CHANGE RECORD
!3 = DELETE RECORD
!4 = LOOKUP FIELD

GROUP,PRE(MEM)
MESSAGE STRING(30) !Global Message Area
PAGE SHORT !Report Page Number
LINE SHORT !Report Line Number
DEVICE STRING(30) !Report Device Name
GETDEPT STRING(10) !Obtain Department filter
GETDIV STRING(10) !Obtain desired division
GETWORKCENT STRING(10) !Obtain Workcenter for filter
DATA-FILE STRING(12) !Data file of random selections
QUOTANUMBER LONG !NUMBER OF DESIRED SELECTIONS
TOTALRECS LONG !Total # of Personnel
REPORTTYPE STRING(1) !What type of report desired?

EJECT('CODE SECTION')
CODE
SETHUE(7,0) !SET WHITE ON BLACK
BLANK ! AND BLANK
HELPWDRUGDOG.HLP') !OPEN THE HELP FILE
G_OPENFILES !OPEN OR CREATE FILES

68

SETHUE() ! THE SCREEN
MAINMENU !USN Random Urinalysis Program
RETURN !EXIT TO DOS

GOPENFILES PROCEDURE !OPEN FILES & CHECK FOR ERROR
CODE
GOPENFILES2DRUGDOG) !CALL OPEN FILE PROCEDURE
GOPENFILES2(TEMPRAND) !CALL OPEN FILE PROCEDURE
BLANK !BLANK THE SCREEN

OOPENFILES2 PROCEDURE(GFILE) !OPEN EACH FILE & CHECK ERROR
G_FILE EXTERNAL,FILE
FILE-NAME STRING(64)

CODE
FILENAME = NAME(GFILE)
SHOW(25,1,CENTER('OPENING FILE: '& CLIP(FILENAME),80)) !DISPLAY FILE

NAME
OPEN(GFILE) !OPEN THE FILE
IF ERROR() !OPEN RETURNED AN ERROR

CASE ERRORCODE() ! CHECK FOR SPECIFIC ERROR
OF 46 ! KEYS NEED TO BE REBUILT

SETHUE(0,7) ! BLACK ON WHITE
SHOW(25,1,CENTER('REBUILDING KEY FILES FOR' & CLIP(FILENAME),80))
BUILD(GFILE) ! CALL THE BUILD PROCEDURE
IF ERROR() ! ON UNNEXPECTED ERROR

LOOP ! STOP EXECUTION
STOP('Cannot Build'& FILENAME &' - Error:' & ERRORO)

SETHUE(7,O) ! WHITE ON BLACK
BLANK(25,1,1,80) ! BLANK THE MESSAGE

OF2 !IF NOT FOUND,
CREATE(GFILE) ! CREATE
IF ERROR() !STOP ON UNNEXPECTED ERROR
LOOP

STOP('Cannot Create ' & FILENAME & '- Error: ' & ERRORO)

OF 73 ! MEMO FILE NOT FOUND
LOOP STOP EXECUTION

STOP('Cannot Open Memo File for' & FILENAME & ERRORO)

ELSE ! ANY OTHER ERROR
LOOP ! STOP EXECUTION

STOP('Cannot Open ' & FILE_NAME & '- Error: '& ERRORO)

69

MEM]BER('DRUGDOG)
MAINMENU PROCEDURE

SCREEN SCREEN PRE(SCR),WINDOW(25,80),AT7l,I),HUE(15,1)
ROW(10,26) PAINT(12,30),HUE(15,4)
ROW(22,27) PAINT(1,30),HrUE(15,0)
ROW(8,57) PAINT(15,2),HUE(15,0)
ROW(6,25) PAINT(4,32),HU(15,4)
ROW(23,27) PAINT(1,34),HUE(7,1)
ROW(1,1) STRIN G('rr--i3 1)rr- I15)Tr---130)11 ') HUE(15, 1)
ROW(2,1) STRLNG0'I <01311> 11<0115)> 11 <0(30)> II '),HUE(15,1)
ROW(3,1) STRING(' II <0{31)> il(15)!9 <0130)> l'),HIJE(15,1)
RQW(4,1) REPEAT(4);STRING('11 <0178>1 l'),HUE(15,1).
RQW(8,1) STRING('11I<ots}>in<0,0>z01491><(61><017> Ii')

HUE(15,1)
RQW(9,1) STRING(' II <0(6>w <0>u<050)>u<04>U<081> lI')I

H.UE(15,1)
ROW(10,1) STRING('11I<017)>u<0>in<0511>U<0,0U<0(91> II')I

HUE(15,1)
ROW(11,1) STR[NG(' ((<0(71> 0(52>cz0(101> ll'),HUE(15,1)
ROW(12,1) REPEAT(3);STRING('I <0(78>11 '),HUE(15,1).
ROW(15,1) STRING{' 11<0(101> <0{511u<0{41>U<0141 ') I

HUE(15,1)
ROW(16,1) STRING('11 <0181> {71<0(49><01(41>'z01411 ')I

HUE(15, 1)
ROW(17,1) STRING(' 11 <0(7}<j0(5>048)>1804> 11 0) 1

HUTE(15,1)
ROW(18,1) STRING(' II <017}>§U1111<0j51>m<0171> II '),HUE(l5,1)
ROW(19,1) STRING(' II <0f7>u<0(71u<0f511,U<07)> II '),HUE(15,1)
ROW(20,1) REPEAT(5);STRING(' 11<0(781>11 '),HUTE(15,1).

ROW(625) STRING('LL={1=(18jJ)HUE151),UE154

ROW(7,25) STRING('11 <015)> 1 <0(181> 1 <015)> l'),=U(15,4)
RQW(8,5) STRING(W(181> 11 <0(51> L-1 18)J <0151> j'),HUE(15,4)
ROW(9,5) REPEAT(3);STRING(<0(181> 11 <0(30)> If '),HUE(15,4).
ROW(12,25) REPEAT(9);STRING(' 11 <0(30)> l'),IIUE(15,4).
ROW(21 ,25) STRING0({30PP')HUE(15,4)
ROW(24,11) STRING('=< 16,0(201 ,24,0,25>'),HUJE(14,1)
ROW(2,34) STRING(' DRUGDOG v3.0 '),HUJE(11,0)
ROW(4,17) SThINGfU)

COL(18) STRING('NITED '),HUE(15,I)
COL(25) STRING('S')
C0U(26) STRINOCTATES '),HUE(15,1)
COL(33) STRING{'N')
COL(34) STRING('AVY '),HUE(15,1)
COL(39) STRINGVWR)
COL(40) STRING(ANDOM'),HUZE(15,1)
COL(46) STRING("),HUE(15,1)
COL(47) STRINGU')

70

COL(48) STRINO{'INALYSIS PROGRAM'),HUE(15,1)
ROW(7,33) STRINGVM A IN ME N U),HUE(14,4)
ROW(24,8) STRING(F1'),HUE(14,1)

COL(14) STRING{'Help'),HtJE(14,1)
COL(34) STRING('),HUE(14,1)
COL(37) STRING(' Select Option'),HUE(14,1)
COL(62) STRINGCToday:'),HUE(14,1)DATE
COL(69) STRING(@D7),HUE(14,1)

ENTRY,USE(FIRSTYIELD)
ENTRY,USE(?PREMENU)
MENU,USE(MENULFIELD"),REQ

ROW(10,29) STRING('Conduct Random Urinalysis'),HUE(15,4)I
SEL(14,0)

ROW(12,33) STRINGCRoster Maintenance),HUE(15,4),SEL(14,0)
ROW(14,35) STRINGCTrint Reports'),HtTUE(15,4),SEL(14,0)
ROW(16,32) STRING(Database Utilities),HUE(15,4),SEL(14,0)
ROW(18,35) STRING('User"s Manual'),HTJE(15,4),SEL(14,0)
ROW(20,35) STRING('Exit Program'),HUE(15,4),SEL(14,0)

EJECT
CODE
OPEN(SCREEN) !OPEN THE MENU SCREEN
SETOURSOR !TURN OFF ANY CURSOR
MENU_FIELD" ="!START MENU WITH FIRST ITEM
LOOP !LOOP UNTIL USER EXITS

SCR:DATE = TODAY()
ALERT !TURN OFF ALL ALERTED KEYS
ALERT(REJECT-KEY) !ALERT SCREEN REJECT KEY
ALERT(ACCEPTJ(IEY) !ALERT SCREEN ACCEPT KEY
ACCEPT !READ A FIELD OR MENU CHOICE
IF CHUCKED() = REJECTKEY THEN RETURN. !RETURN ON SCREEN REJECT

IF CHUCKED() = ACCEPT.KEY !ON SCREEN ACCEPT KEY
UPDATE !MOVE ALL FIELDS FROM SCREEN
SELECT(?M START WITH CURRENT FIELD
SELECT !EDIT ALL FIELDS
CYCLE !GO TO TOP OF LOOP

CASE FIELD() !JUMP TO FIELD EDIT ROUTINE
OF ?FIRSTFIELD !FROM THE FIRST FIELD

IF CHUCKEDO = ESOKEY THEN RETURN.! RETURN ON ESC KEY

OF ?PREMENU !PRE MENU FIELD CONDITION
IF CHUCKED() = ESCKEY! BACKING UP?

SELECT(?-1) !SELECT PREVIOUS FIELD
ELSE .GOING FORWARD

SELECT(?+1) !SELECT MENU FIELD

71

O F?MENU!IELD" !FROM THE MENU FIELD
EXECUTE CHOICE() CALL THE SELECTED PROCEDURE

GET-RIAND !RANDOM SELECTION PROCESS
PERS.MENU ! Personnel Roster Maintenance
PRINT...RPT !Report Generation Menu
PRT..ROSTER
MANUAL !Displays User's Guide
RETURN

MEMBERQIDRUGDOG)
SHO-LASTNAME PROCEDURE

SCREEN SCREEN PRE(SCR),WINDOW(25,80),AT(,1),HUE(15,1)
ROW(22,7) PAJNT(1,67),HUE(0,7)
ROW(23,7) PAINT(1,69),HUE(7,0)
ROW(7,74) PAINT(16,2),HUE(7,0)
ROW(22,5) PAJNT(1,1),HUE(7,1)
ROW(22,6) PAINT(1,1),HUE(0,1)
ROW(7,5) PAINT(15,69),IJE(0,7)

ROW(2,1) STRING(' 11 <0123)> 1 <01311> 1<0122)> l'),HUTE(15,1)
ROW(3,1) STRING{' 11 <0123)> L-13 1)J <01221> l'),HIJE(15,1)
ROW(4,1) REPEAT(4);STRING(' 11 <01781>1 l'),HUE(15,1 1.
ROW(8,1) STR2ING(' 11 <075),24,0,0> l'),HUE(15,1)
ROW(9, 1) STR2ING(' 11 <0,24,0176)> II '),HUTE(15,1)
ROW(10,1) REPEAT(9);STRING(' 11<0178)>11I'),HUE(15,1).
ROW(19,1) STRING(' 11 <0,25,0176> l'),HUTEN 15,1)
ROW(20, 1) STRING(' 11<0175) ,25,0,0> II '),HUJE(15,1)
ROW(21,1) REPEAT(2);STRING('1I <0178> l'),HUE(15,1).

ROW(24,1) STRING(' 11 <01781> 11 1'HUE(15,1)

ROW(22,7) STRING('-169)'),HUE(0,0)
ROW(24,7) STRING(=<16,0113>=<16,0112)>=<16,0114)>=<16>' I

& '<0f151>=<16>'),H1JE(14,1)
ROW(2,26) STRING(' Commxnd Personnel by Lastnane '),HUE(11,0)
ROW(4,26) STRING('LOCATE:'),HUE(11,1)
ROW(6,6) STRING(LAST NAME (121FIRST NAME (10)SSN (5)RATE'

COL(63) STRING('WORKCENTER'),HUE(15,1)
ROW(9,77) STRINGQTg')
ROW(10,77) STRINGCUp')
ROW(18,77) STRING(Tg')
ROW(19,77) STRINGQ Dn')
ROW(24,4) STRINGC'F1'),HUE(14,4)

COL(9) STRING'Help'),HUE(14,1)

72

COL(17) STRING(, V),UE(14, 1)
COL(18) STR[NG('INS'),HUE(14,4)
COL(25) STRING('Add'),HUE(14,1)
COL(32) STRING('RTN'),HUE(14,4)
COL(39) STRING('Change '),HIJE(14,I)
COL(48) STR[NG('DEL'),HUE(14,4)
COL(55) STR[NG('Delete '),HUE(14,1)
COL(65) STRING('ESC'),HUE(14,4)
COL(72) STRINGC'Exit'),HUE(14,1)

LOCATOR ROW(4,34) STRING(20),RtJE(14,O)
ENTRY,USE(?FIRST..FIELD)
ENTRY,USE(?PRE-POINT)
REPEAT(15),EVERY(1),INDEX(NDX)

ROW(7,5) POINT(1,69),USE(?POINT),ESC(?-1)
LASTNAME COL(6) STRING(20)
FIRSTNAME COL(27) STRING(15)
SSN COL(43) STRING{@N09)
RATE COL(55) STRING(6)
WORKCENT COL(63) STRING(1O)

NDX BYTE !REPEAT INDEX FOR POINT AREA
ROW BYTE !ACTUAL ROW OF SCROLL AREA
COL BYTE !ACTIUAL COLUMN OF SCROLL AREA
COUNT BYTE(15) !NUMBER OF ITEMS TO SCROLL
ROWS BYTE(15) !NUMBER OF ROWS TO SCROLL
COLS BYTE(69) !NUMBER OF COLUMNS TO SCROLL
FOUND BYTE !RECORD FOUND FLAG
NEWPTR LONG !POINTER TO NEW RECORD

TABLE TABLE,PRE(TBL) !TABLE OF RECORD DATA
PTR LONG !POINTER TO FILE RECORD
LASTNAME STRING(20)
FIRSTNAME STRING{ 15)
SSN LONG
RATE STRING(6)
WORKCENT STRING(1O)

EJECT
CODE
ACTION# =ACTION !SAVE ACTION
OPEN(SCREEN) !OPEN THE SCREEN
SETCURSOR !TURN OFF ANY CURSOR
TBL:PTR = !START AT TABLE ENTRY
NDX 1 !PUT SELECTOR BAR ON TOP ITEM
ROW =ROWPOINT) !REMEMBER TOP ROW AND
COL =COL(POINT) !LEFT COLUMN OF SCROLL AREA
RECORDS# = TRUE !INITIALIZE RECORDS FLAG

73

CACHE(DRU:BY_LASTNAME,.25) !CACHE KEY FILE
IF ACTION = 4 ! TABLE LOOKUP REQUEST

NEWPTR = POINTER(DRUGDOG)! SET POINTER TO RECORD
IF NOT NEWPTR ! RECORD NOT PASSED TO TABLE

SET(DRU:BYLASTNAME,DRU:BY LASTNAME)! POSITION TO CLOSEST
RECORD

NEXT(DRUGDOG) ! READ RECORD
NEWPTR = POINTER(DRUGDOG)! SET POINTER

DO FIND-RECORD ! POSITION FILE
ELSE

NDX = 1 ! PUT SELECTOR BAR ON TOP ITEM
DO FIRST-PAGE ! BUILD MEMORY TABLE OF KEYS

RECORDS# = TRUE ! ASSUME THERE ARE RECORDS
LOOP !LOOP UNTIL USER EXITS

ACTION = ACTION# !RESTORE ACTION
ALERT !RESET ALERTED KEYS
ALERT(REJECTKEY) !ALERT SCREEN REJECT KEY
ALERT(ACCEPTKEY) !ALERT SCFEEN ACCEPT KEY
ACCEPT !READ A FIELD
IF CHUCKED() = REJECTKEY THEN BREAK !RETURN ON SCREEN REJECT

KEY
IF CHUCKED() = ACCEPTKEY I !ON SCREEN ACCEPT KEY
AND FIELDO <> ?POINT !BUT NOT ON THE POINT FIELD

UPDATE ! MOVE ALL FIELDS FROM SCREEN
SELECT(?) ! START WITH CURRENT FIELD
SELECT ! EDIT ALL FIELDS
CYCLE ! GO TO TOP OF LOOP

CASE FIELD() !JUMP TO FIELD EDIT ROUTINE

OF ?FIRSTFIELD !FROM THE FIRST FIELD
IF CHUCKED() = ESCKEY I ! RETURN ON ESC KEY
OR RECORDS# = FALSE! OR NO RECORDS

BREAK ! Er " PROCEDURE

OF ?PREPOINT !PRE POINT FIELD CONDITION
IF CHUCKEDO = ESCKEY! BACKING UP?

SELECT(?-I) ! SELECT PREVIOUS FIELD
ELSE ! GOING FORWARD

SELECT(?POINT) ! SELECT MENU FIELD

IF CHUCKED() = ESCKEY! BACKING UP?
SCR:LOCATOR =" ! CLEAR LOCATOR
SETCURSOR ! AND TURN CURSOR OFF

ELSE ! GOING FORWARD
LEN# = 0 ! RESET TO START OF LOCATOR

74

SETCURSOR(ROW(SCR:LOCATOR),COL(SCR:LOCATOR)) !AND TURN CURSOR
ON

OF ?POINT !PROCESS THE POINT FIELD
IF RECORDS(TABLE) = 0 !IF THERE ARE NO RECORDS

CLEAR(DRU:RECORD)! CLEAR RECORD AREA
ACTION = 1 ! SET ACTION TO ADD
GET(DRUGDOG,0) ! CLEAR PENDING RECORD
UPDDRUGDOG ! CALL FORM FOR NEW RECORD
NEWPTR = POINTER(DRUGDOG)! SET POINTER TO NEW RECORD
DO FIRST-PAGE ! DISPLAY THE FIRST PAGE
IF RECORDS(TABLE) = 0 ! IF THERE AREN'T ANY RECORDS

RECORDS# = FALSE ! INDICATE NO RECORDS
SELECT(?PREPOINT-1)! SELECT THE PRIOR FIELD

CYCLE ! AND LOOP AGAIN

IF CHUCKEDO > 31 I !THE DISPLAYABLE CHARACTERS
AND CHUCKED() < 255 !ARE USED TO LOCATE RECORDS

IF LEN# < SIZE(SCR:LOCATOR)! IF THERE IS ROOM LEFT
SCR:LOCATOR = SUB(SCR:LOCATOR,1,LEN#) & CHR(CHUCKEDO)
LEN# += 1 ! INCREMENT THE LENGTH

ELSIF CHUCKED() = BSKEY !BACKSPACE UNTYPES A CHARACTER
IF LEN# > 0 ! IF THERE ARE CHARACTERS LEFT

LEN# -= 1 ! DECREMENT THE LENGTH
SCR:LOCATOR = SUB(SCR:LOCATOR,1,LEN#)! ERASE THE LAST

CHARACTER

ELSE !FOR ANY OTHER CHARACTER
LEN# = 0 ! ZERO THE LENGTH
SCR:LOCATOR =" ! ERASE THE LOCATOR FIELD

SETCURSOR(ROW(SCR:LOCATOR),COL(SCR:LOCATOR)+LEN#) !AND RESET THE
CURSOR

DRU:LASTNAME = CLIP(SCR:LOCATOR)! UPDATE THE KEY FIELD
TIME# = CLOCK() !SAVE THE TIME
LOOP UNTIL KEYBOARD() !WAIT FOR A KEYSTROKE

IF CLOCK() > TIME# + 50 THEN BREAK ! BUT ONLY 1/2 OF A SECOND

IF KEYBOARDO > 31 I !THE DISPLAYABLE CHARACTERS
AND KEYBOARD() < 255 1 !ARE USED TO LOCATE RECORDS
OR KEYBOARD() = BSKEY !INCLUDE BACKSPACE

CYCLE

IF LEN# > 0 !ON A LOCATOR REQUEST
DRU:LASTNAME = CLIP(SCR:LOCATOR)! UPDATE THE KEY FIELD
SET(DRU:BYLASTNAME,DRU:BYLASTNAME)! POINT TO NEW RECORD
NEXT(DRUGDOG) ! READ A RECORD

75

IF (EOF(DRUGDOG) AND ERRORO)! IF EOF IS REACHED
SET(DRU:BYLASTNAME)! SET TO FIRST RECORD
PREVIOUS(DRUGDOG)! READ THE LAST RECORD

NEWPTR = POINTER(DRUGDOG)! SET NEW RECORD POINTER
SKIP(DRUGDOG,-1) ! BACK UP TO FIRST RECORD
FREE(TABLE) ! CLEAR THE TABLE
DO NEXT_PAGE ! AND DISPLAY A NEW PAGE

CASE CHUCKED() !PROCESS THE KEYSTROKE

OF INSKEY !INS KEY
CLEAR(DRU:RECORD)! CLEAR RECORD AREA
ACTION = 1 ! SET ACTION TO ADD
GET(DRUGDOG,O) ! CLEAR PENDING RECORD
UPDDRUGDOG ! CALL FORM FOR NEW RECORD
IF -ACTION ! IF RECORD WAS ADDED

NEWPTR = POINTER(DRUGDOG)! SET POINTER TO NEW RECORD
DO FINDRECORD ! POSITION IN FILE

OF ENTER-KEY !ENTER KEY
OROF ACCEPTKEY !CTRL-ENTER KEY

DO GET-RECORD ! GET THE SELECTED RECORD
IF ACTION = 4 AND CHUCKED() = ENTERKEY! IF THIS IS A LOOKUP

REQUEST
ACTION = 0 ! SET ACTION TO COMPLETE
BREAK ! AND RETURN TO CALLER

IF -ERROR() ! IF RECORD IS STILL THERE
ACTION = 2 ! SET ACTION TO CHANGE
UPDDRUGDOG ! CALL FORM TO CHANGE REC
IF ACTION ! IF SUCCESSFUL RE-DISPLAY

ACTN# = 0 THEN CYCLE.

NEWPTR = POINTER(DRUGDOG)! SET POINTER TO NEW RECORD
DO FIND-RECORD ! POSITION IN FILE

OF DELKEY !DEL KEY
DO GETRECORD ! READ THE SELECTED RECORD
IF -ERROR() ! IF RECORD IS STILL THERE

ACTION = 3 ! SET ACTION TO DELETE
UPDDRUGDOG ! CALL FORM TO DELETE
IF -ACTION ! IF SUCCESSFUL

N# = NDX !SAVE POINT INDEX
DO SAMEPAGE !RE-DISPLAY
NDX = N# RESTORE POINT INDEX

OF DOWNKEY !DOWN ARROW KEY
DO SET-NEXT ! POINT TO NEXT RECORD
DO FILL.NEXT ! FILL A TABLE ENTRY

76

IF FOUND ! FOUND A NEW RECORD
SCROLL(ROW,COL,ROWS,COLS,ROWS(?POINT))! SCROLL THE SCREEN UP
GET(TABLE,RECORDS(TABLE))! GET RECORD FROM TABLE
DO FILL_SCREEN ! DISPLAY ON SCREEN

OF PGDN_.KEY !PAGE DOWN KEY
DO SETNEXT ! POINT TO NEXT RECORD
DO NEXT-PAGE ! DISPLAY THE NEXT PAGE

OF CTRLPGDN !CTRL-PAGE DOWN KEY
DO LAST-PAGE ! DISPLAY THE LAST PAGE
NDX = RECORDS(TABLE)! POSITION POINT BAR

OF UPKEY !UP ARROW KEY
DO SETPREV ! POINT TO PREVIOUS RECORD
DO FILLPREV ! FILL A TABLE ENTRY
IF FOUND ! FOUND A NEW RECORD

SCROLL(ROW,COL,ROWS,COLS,-(ROWS(?POINT)))! SCROLL THE SCREEN
DOWN

GET(TABLE,l) ! GET RECORD FROM TABLE
DO FILLSCREEN ! DISPLAY ON SCREEN

OF PGUPKEY !PAGE UP KEY
DO SETPREV ! POINT TO PREVIOUS RECORD
DO PREVPAGE ! DISPLAY THE PREVIOUS PAGE

OF CTRLPGUP !CTRL-PAGE UP
DO FIRSTPAGE ! DISPLAY THE FIRST PAGE
NDX = 1 POSITION POINT BAR

FREE(TABLE) !FREE MEMORY TABLE
FREE(DRU:BYLASTNAME) !FREE CACHE
RETURN !AND RETURN TO CALLER

SAMEPAGE ROUTINE !DISPLAY THE SAME PAGE
GET(TABLE,I) ! GET THE FIRST TABLE ENTRY
DO FILLRECORD ! FILL IN THE RECORD
SET(DRU:BYLASTNAME,DRU:BYLASTNAME,TBL:PTR)! POSITION FILE
FREE(TABLE) ! EMPTY THE TABLE
DO NEXTPAGE ! DISPLAY A FULL PAGE

FIRSTPAGE ROUTINE DISPLAY FIRST PAGE
FREE(TABLE) ! EMPTY THE TABLE
CLEAR(DRU:RECORD,-l) ! CLEAR RECORD TO LOW VALUES
CLEAR(TBL:PTR) ! ZERO RECORD POINTER
SET(DRU:BYLASTNAME) ! POINT TO FIRST RECORD
LOOP NDX = I TO COUNT! FILL UP THE TABLE

77

DO FILL-NEXT ! FILL A TABLE ENTRY
IF NOT FOUND THEN BREAK! GET OUT IF NO RECORD

NDX = 1 ! SET TO TOP OF TABLE
DO SHOW-PAGE ! DISPLAY THE PAGE

LAST-PAGE ROUTINE !DISPLAY LAST PAGE
NDX# = NDX ! SAVE SELECTOR POSITION
FREE(TABLE) ! EMPTY THE TABLE
CLEAR(DRU:RECORD,1) ! CLEAR RECORD TO HIGH VALUES
CLEAR(TBL:PTR,1) ! CLEAR PTR TO HIGH VALUE
SET(DRU:BY..LASTNAME) !POINT TO FIRST RECORD
LOOP NDX = COUNT TO 1 BY -1 ! FILL UP THE TABLE

DO FILLPREV ! FILL A TABLE ENTRY
IF NOT FOUND THEN BREAK! GET OUT IF NO RECORD

! END OF LOOP
NDX = NDX# ! RESTORE SELECTOR POSITION
DO SHOW-PAGE ! DISPLAY THE PAGE

FINDRECORD ROUTINE !POSITION TO SPECIFIC RECORD
SET(DRU:BYJLASTNAME,DRU:BYLASTNAME,NEWPTR) !POSITION FILE
IF NEWPTR = 0 !NEWPTR NOT SET

NEXT(DRUGDOG) ! READ NEXT RECORD
NEWPTR = POINTER(DRUGDOG)! SET NEWPTR
SKIP(DRUGDOG,-1) ! BACK UP TO DISPLAY RECORD

FREE(TABLE) ! CLEAR THE RECORD
DO NEXT.PAGE ! DISPLAY A PAGE

NEXTPAGE ROUTINE !DISPLAY NEXT PAGE
SAVECNT# = RECORDS(TABLE)! SAVE RECORD COUNT
LOOP COUNT TIMES ! FILL UP THE TABLE

DO FILLNEXT ! FILL A TABLE ENTRY
IF NOT FOUND ! IF NONE ARE LEFT

IF NOT SAVECNT# !IF REBUILDING TABLE
DO LASTPAGE !FILL IN RECORDS
EXIT !EXIT OUT OF ROUTINE

BREAK ! EXIT LOOP

DO SHOW-PAGE ! DISPLAY THE PAGE

SET-NEXT ROUTINE !POINT TO THE NEXT PAGE
GET(TABLE,RECORDS(TABLE))! GET THE LAST TABLE ENTRY
DO FILL_RECORD ! FILL IN THE RECORD
SET(DRU:BYLASTNAME,DRU:BY_LASTNAME,TBL:PTR)! POSITION FILE
NEXT(DRUGDOG) ! READ THE CURRENT RECORD

FILLNEXT ROUTINE !FILL NEXT TABLE ENTRY

78

FOUND = FALSE ! ASSUME RECORD NOT FOUND
LOOP UNTIL EOF(DRUGDOG)! LOOP UNTIL END OF FILE

NEXT(DRUGDOG) ! READ THE NEXT RECORD
FOUND = TRUE ! SET RECORD FOUND
DO FILLTABLE ! FILL IN THE TABLE ENTRY
ADD(TABLE) ! ADD LAST TABLE ENTRY
GET(TABLE,RECORDS(TABLE)-COUNT)! GET ANY OVERFLOW RECORD
DELETE(TABLE) ! AND DELETE IT
EXIT ! RETURN TO CALLER

PREVPAGE ROUTINE !DISPLAY PREVIOUS PAGE
LOOP COUNT TIMES ! FILL UP THE TABLE

DO FILL-PREV ! FILL A TABLE ENTRY
IF NOT FOUND THEN BREAK! GET OUT IF NO RECORD

DO SHOWPAGE ! DISPLAY THE PAGE

SET_PREV ROUTINE !POINT TO PREVIOUS PAGE
GET(TABLE,I) ! GET THE FIRST TABLE ENTRY
DO FILL_.RECORD ! FILL IN THE RECORD
SET(DRU:BYLASTNAMEDRU:BYLASTNAME,TBL:PTR)! POSITION FILE
PREVIOUS(DRUGDOG) ! READ THE CURRENT RECORD

FILLPREV ROUTINE !FILL PREVIOUS TABLE ENTRY
FOUND = FALSE ! ASSUME RECORD NOT FOUND
LOOP UNTIL BOF(DRUGDOG) ! LOOP UNTIL BEGINNING OF FILE

PREVIOUS(DRUGDOG) ! READ THE PREVIOUS RECORD
FOUND = TRUE ! SET RECORD FOUND
DO FILLTABLE ! FILL IN THE TABLE ENTRY
ADD(TABLEl) ! ADD FIRST TABLE ENTRY
GET(TABLE,COUNT+l) ! GET ANY OVERFLOW RECORD
DELETE(TABLE) ! AND DELETE IT
EXIT ! RETURN TO CALLER

SHOWPAGE ROUTINE !DISPLAY THE PAGE
NDX# = NDX ! SAVE SCREEN INDEX
LOOP NDX = 1 TO RECORDS(TABLE)! LOOP THRU THE TABLE

GET(TABLE,NDX) ! GET A TABLE ENTRY
DO FILLSCREEN ! AND DISPLAY IT
IF TBL:PTR = NEWPTR ! SET INDEX FOR NEW RECORD

NDX# = NDX ! POINT TO CORRECT RECORD

LOOP WHILE NDX <= COUNT! FINISH BLANKING THE SCREEN
BLANK(ROW(?POINT),COL(?POINT),ROWS(?POINT),COLS(?POINT))!BLANK A LINE
NDX += 1 ! INCREMENT NDX

NDX = NDX# ! RESTORE SCREEN INDEX
NEWPTR = 0 ! CLEAR NEW RECORD POINTER
CLEAR(DRU:RECORD) ! CLEAR RECORD AREA

79

FILL-.TABLE ROUTINE WMOVE FILE TO TABLE
TBL:LASTNAME = DRU:LASTNAME
TBL:FIRST..NAME = DRU:F[RST-NAME
TBL:SSN = DRU:SSN
TBL:RATE = DRU:RATE
TBL:WORKCENT = DRU:WORKCENT
TBL:PTR = POINTER(DRUGDOG)! SAVE RECORD POINTER

FILL-.RECORD ROUTINE WMOVE TABLE TO FILE
DRU:LASTNAME = TBL:LASTNAME

FILL-SCREEN ROUTINE WMOVE TABLE TO SCREEN
SCR:LASTNAME = TBL:LASTNAME
SCR:FIRSTNAME = TBL:FIRSTNAME
SCR:SSN = TBL:SSN
SCR:RATE = TBL:RATE
SCR:WORKCENT = TBL:WORKCENT

GET-RECORD ROUTINE !GET SELECTED RECORD
GET(TABLE,NDX) !GET TABLE ENTRY
GET(DRUGDOG,TBL:PTR) !GET THE RECORD

MEMBER(UDRUGDOG')
UPD-DRUGDOG PROCEDURE

SCREEN SCREEN PRE(SCR),WINDOW(14,41),AT(7,20),HUE(15,4)
ROW(1,40) PAINT(1,2),TRN
ROW(2,40) PAINT(12,2),HUE(7,0),TRN
ROW(14,1) PAINT(1,2),TRN
ROW(14,3) PAINT(1,39),HUE(7,0),TRN
ROW(,1) STRING(' ri={37)h- '),HUE(15,4)
ROW(2,1) REPEAT(1 1);STRING(' 11 <0(37)> Ii '),HUE(15,4).

ROW(2,13) STRINGCUpdate Personnel')
ROW(5,4) STRING(LASTNAME:')
ROW(6,4) STRING(FIRST NAME:')
ROW(7,4) STRING('SSN:')

COL(8) STRING(' '),HUE(7,4)
ROW(8,4) STRINGcRATE:')
ROW(9,4) STRING{'DEPT:')
ROW(10,4) STRING(DI VISION:')
ROW(11,4) STRING(WORKCENTER:')

MESSAGE ROW(3,6) STRING(30),HUE(15,4)
ENTRY,USE(?FIRST-FIELD)

'ROW(5,16) ENTRY(@s20),USE(DRU:LASTNAME),UTPR,REQ,HUE(14,4)
SEL(14,0)

80

ROW(6,16) ENTRY(@sI5),USE(DRU:FIRSTNAME),UPRREQ,HUE(14,4)

SEL(14,0)
ROW(7,16) ENTRY(@N09),USE(DRU:SSN),HLP('SSN')XNUM,INS,HUE(14,4) I

SEL(14,D)
ROW(8,16) ENTRY(@s6),USE(DRU:RATE),HLP('RATE'),UPR,HUE(14,4) I

SEL(14,0)
ROW(9,16) ENTRY(@slO),USE(DRU:DEPT),HLP(DEP),UPR,REQ I

HUE(14,4),SEL(14,0)
ROW(10,16) ENTRY(@slO),USE(DRU:DIV),HLP(DIV'),UPR,REQ,HUE(14,4)1

SEL(14,0)
ROW(11,16) ENTRY(@slO),USE(DRU:WORKCENT),HLP('V/C'),UPR,REQ

HUE(14,4),SEL(14,0)
ENTRY,USE(?LASTFIELD)
PAUSE("),USE(?DELETE-FIELD)

EJECT
CODE
OPEN(SCREEN) !OPEN THE SCREEN
SETCURSOR !TURN OFF ANY CURSOR
DISPLAY !DISPLAY THE FIELDS
LOOP !LOOP THRU ALL THE FIELDS

MEM:MESSAGE = CENTER(MEM:MESSAGE) !DISPLAY ACTION MESSAGE
DO CALCFIELDS !CALCULATE DISPLAY FIELDS
ALERT !RESET ALERTED KEYS
ALERT(ACCEPTKEY) !ALERT SCREEN ACCEPT KEY
ALERT(REJECTKEY) !ALERT SCREEN REJECT KEY
ACCEPT !READ A FIELD
IF CHUCKED() = REJECT.KEY THEN RETURN. !RETURN ON SCREEN REJECT

KEY
EXECUTE ACTION !SET MESSAGE

MEM:MESSAGE = 'Record will be Added'!
MEM:MESSAGE = 'Record will be Changed'!
MEM:MESS.AGE = Press Enter to Delete'!

IF CHUCKED() = ACCEPT_.KEY !ON SCREEN ACCEPT KEY
UPDATE ! MOVE ALL FIELDS FROM SCREEN
SELECT(?) ! START WITH CURRENT FIELD
SELECT ! EDIT ALL FIELDS
CYCLE ! GO TO TOP OF LOOP

CASE FIELDO !JUMP TO FIELD EDIT ROUTINE
OF ?FIRSTFIELD !FROM THE FIRST FIELD

IF CHUCKEDO = ESCKEY THEN RETURN.! RETURN ON ESC KEY
IF ACTION = 3 THEN SELECT(?DELETEFIELD).! OR CONFIRM FOR DELETE

OF ?DRU:SSN

81

IF -INRANGE(DRU:SSN,0,999999999) !IF FIELD IS OUT OF RANGE
BEEP ! SOUND KEYBOARD ALARM
SELECT(?DRU:SSN) ! AND STAY ON THIS FIELD
CYCLE ! GO TO TOP OF LOOP

OF ?LASTFIELD !FROM THE LAST FIELD
IF CHUCKED() = 0 THEN SELECT(?).! CHECK CHUCKED

EXECUTE ACTION ! UPDATE THE FILE
ADD(DRUGDOG) ! ADD NEW RECORD
PUT(DRUGDOG) ! CHANGE EXISTING RECORD
DELETE(DRUGDOG) ! DELETE EXISTING RECORD

IF ERRORCODE() = 40 ! DUPLICATE KEY ERROR
MEM:MESSAGE = ERRORO! DISPLAY ERR MESSAGE
SELECT(2) ! POSITION TO TOP OF FORM
CYCLE ! GET OUT OF EDIT LOOP

ELSIF ERROR() ! CHECK FOR UNEXPECTED ERROR
EXECUTE ACTION ! BUILD AN ERROR MESSAGE

ERROR" = 'Error: '& ER)R() &" I !FOR ADDING
& 'Adding to DRUGDOG'

ERROR" = 'Error:' & ERROR() &" I !FOR CHANGE
& 'Changing DRUGDOG'

ERROR" = 'Error: '& ERROR() &" I !FOR DELETING
& 'Deleting from DRUGDOG'

STOP(ERROR") ! HALT EXECUTION

ACTION = 0 ! SET ACTION TO COMPLETE
RETURN ! AND RETURN TO CALLER

OF ?DELETEYELD !FROM THE DELETE FIELD
IF CHUCKED() = ENTERKEY I ! ON ENTER KEY
OR CHUCKED() = ACCEPT_KEY! OR CTRL-ENTER KEY

SELECT(?LASTFIELD)! DELETE THE RECORD
ELSE ! OTHERWISE

BEEP ! BEEP AND ASK AGAIN

CALCFIELDS ROUTINE
IF FIELD() > ?FIRST_FIELD !BEYOND FIRST-FIELD?

IF CHUCKED() = 0 AND SELECTED() > FIELDO THEN EXIT. !GET OUT IF NOT
NONSTOP

SCR:MESSAGE = MEM:MESSAGE

MEMBER(DRUGDOG')
PERSMENU PROCEDURE

82

SCREEN SCREEN
PRE(SCR),WINDOW(22,80),AT(,1),IHLP('PER-MIEN'),HUE(15,1)

ROW(7,27) PAINT(13,22),IJ(15,4)
ROW(6,49) PAINIX14,6),HUE(15,4)
ROW(6,55) PAINT(15,1),HUE(15,4)
ROW(21,28) PAINT(1,29),HUE(15,0)
ROW(7,57) PAINT(15,2),HUE(15,0)
ROW(1,1) STRING('1r41311=15)i=430)-1 '),HUE(15,1)
R0W(2,1) STRING01 1<04311> 11<0(15)> 11<01301> j'),HrJE(15,1)
ROW(3,1) STRING(' I <0{311> 11=4 l50~ <0(30> '),HUE(15,1)
ROW(4,1) REPEAT(19);STRING(' 11<0178)> j'),HLTE(15,1I).
ROW(6,26) STRING('j=====j==21h=== '),HUE(15,4)
ROW(7,26) STRING('1I <013)> 1 <01211> 1 <0(3>1 l'),HUE(15,4)
ROW(8,26) STRING('11 <0431> L-({21lJ <0431>1 l'),HUE(15,4)
ROW(9,26) REPEAT(11);STR[NG('I <04291> j'),HUE(15,4).
ROW(20,26) STRING('ilL-29)ii'),HUE(15,4)
ROW(2,34) STRINGC DRUGDOG v 3.0 '),HU7E(11,0)
ROW(7,31) STRINGCR 0 S T E R M E N LJ'),HUE(14,4)

ENTRY,USE(?FIRSTFIELD)
ENTRY,USE(?PREWNUJ)
MENU,USE(MENUFELD"),REQ

ROW(10,32) STRING('View All Personnel'),HUE(15,4),SEL(14,0)
ROW(12,32) STRING('View by Department'),HUE(15,4),SEL(14,0)
ROW(14,33) STRING('View by Division'),HUE(5,4),SEL(14,0)
ROW(16,32) STRING('View by Workcenter'),HUJE(15,4),SEL(14,0)
ROW(18,32) STRING('Return to Main Meriu'),HUJE(15,4),SEL(14,0)

EJECT
CODE
OPEN(SCREEN) !OPEN THE MENU SCREEN
SETCURSOR !TURN OFF ANY CURSOR
MENILFIELD" ="!START MENU WITH FIRST ITEM
LOOP !LOOP UNTIL USER EXITS

ALERT !TURN OFF ALL ALERTED KEYS
ALERT(REJECT..KEY) !ALERT SCREEN REJECT KEY
ALERT(ACCEPT..KEY) !ALERT SCREEN ACCEPT KEY
ACCEPT MREAD A FIELD OR MENU CHOICE
IF CHUCKED() = REJECT...KEY THEN RETURN. !RETURN ON SCREEN REJECT

IF CHUCKED() = ACCEPT.J(EY !ON SCREEN ACCI ~PT KEY
UPDATE ! MOVE ALL FIELDS FROM SCREEN
SELECT(?) ! START WITH CURRENT FIELD
SELECT ! EDIT ALL FIELDS
CYCLE ! GO TO TOP OF LOOP

CASE FIELD() !UMP TO FIELD EDIT ROUTINE
OF ?FIRSTFIELD !FROM THE FIRST FIELD

83

IF CHUCKED() = ESC....EY THEN RETURN.! RETURN ON ESC KEY

OF ?PRE..MENU !PRE MENU FIELD CONDITION
IF CHUCKED() = ESC....EY! BACKING UP?

SELECT(?-) ! SELECT PREVIOUS FIELD
ELSE ! GOING FORWARD

SELECT(?+1) ! SELECT MENU FIELD

O F?MENLLFIELD" !FROM THE MENU FIELD
EXECUTE CHOICE() CALL THE SELECTED PROCEDURE

SHO-.LASTNAME !Show Drugdog By Lastname
SHO...DEPT !Show Drugdog By Department
SHO...D1V !Show Dragdog By Division
SHOWORKCENT !Show Drugdog By Workcenter
RETURN

MEMBER('DRUGDOG')
SHO-DEPT PROCEDURE

SCREEN SCREEN PRE(SCR),WINDOW(25,80),AT(,1),HUE(15,1)
ROW(22,7) PAINT(1,67),HTJE(0,7)
ROW(23,7) PAINT(1,69),HUE(7,0)
ROW(7,74) PAINT(16,2),HUE(7,0)
ROW(22,5) PAINT(1,l),HUE(7,1)
ROW(22,6) PAINT(1,1),HUE(0,1)
ROW(7,5) PAINT(15,69),HUE(0,7)
ROW(1,1) STRING(' r={22)-I=={331j==l-211 '),HUE(15,1)
ROW(2,1) STRING('I <01221> 1 <0133)> 1 <0121)> j'),HUE(15,1)
ROW(3,) STRING(' l <01221> -(33-i <012l11j),H7UE(15,1)
ROW(4,1) REPEAT(4);STRING('fl <0178)> II '),IIUE(15,1).
ROW(8,1) STRING(' 11 <0175),24,0,0> j'),HTJE(15,1)
ROW(9,1) STRING(' 1<0,24,0(76)> II '),HUE(15,1)
ROW(10,1) REPEAT(9);STRING(' 11 <0178)> 11 '),HUE(15,1).
ROW(19,1) STRING01 1<0,25,0176> l'),HUE(15,1)
ROW(20,1) STRING(' 11 <0175),25,0,0> j'),IIUE(15,1)
ROW(21,1) REPEAT(2);STRING(' 11<0(78)> Ii '),HUE(15,1).
ROW(23,1) STRING(-78)1l'),HUE(15,1)
ROW(24,1) STRING(' 11<01781>1 j'),HTJE(15,1)
ROW(25,1) STRING{'1 =780J')HUE(15,1)
ROW(22,7) STRING('-{69)p),HUE(0,0)
ROW(24,7) STRING(=< 16,0(13) >=< 16,0(121 >=< 16,0141>=cz16>' 1

& '<0{151>=<16>'),HUE(14,1)
ROW(2,25) STRING(' Command Personnel by Department '),HUE(l 1,0)
ROW(4,30) STRING('DEPARTMENT:')
ROW(6,7) STRINGC LAST NAME {12)FIRST NAME (5)SSN 18)RATE')

COL(62) STRING('WORKCENTER'),HUE(15,1)

84

ROW(9,77) STRING(Pg')
ROW(10,77) STRING('Up')
ROW(18,77) STRING<'Pg')
ROW(19,77) STRINGV Dn')
ROW(24,4) STRING('F1'),HUE(14,4)

COL(9) STRING(' Help'),KUE(14,1)
COL(17) STRING("),HUE(14,I)
COL(18) STRING'INS'),HUE(14,4)
COL(25) STRING('Add'),HtTE(14,1)
COL(32) STRING('RTN'),HUE(14,4)
COL(39) STRING('Change '),HUE(14,1)
COL(48) STRING('DEL'),HUE(14,4)
COL(55) STRING('Delete '),HUTE(14,1)
COL(65) STRING('ESC'),HUE(14,4)
COL(72) STRING('Exit'),HUE(14,1)

GETDEPT ROW(4,42) STRING(10),H1JE(14,1)
ENTRY,USE(?FIRS IUFIELD)
ENTRY,USE(?PRE-ROINT)
REPEAT(15),EVERY(1),INDEX(NDX)

ROW(7,5) POINT(1,68),USE(?POINT),ESC(?-1)
LASTNAME COL(6) STRING(20)
FIRSTNAME COL(27) STRING(15)
SSN COL(43) STRING(@N09)
RATE COL(54) STRING(6)
WORKOENT COL(62) STRING{10)

NDX BYTE !REPEAT INDEX FOR POINT AREA
ROW BYTE !ACTUAL ROW OF SCROLL AREA
COL BYTE !ACTUAL COLUMN OF SCROLL AREA
COUNT BYTE(15) !NUMBER OF ITEMS TO SCROLL
ROWS BYTE(15) !NUMBER OF ROWS TO SCROLL
COLS BYTE(68) !NUMBER OF COLUMNS TO SCROLL
FOUND BYTE !RECORD FOUND FLAG
NEWPTTR LONG !POINTER TO NEW RECORD

TABLE TABLE,PRE(TBL) !TABLE OF RECORD DATA
PTR LONG !POINTER TO FILE RECORD
LASTNAME STRING(20)
FIRST.NAME STRING(15)
SSN LONG
RATE STRING(6)
WORKCENT STRING(10)
DEPT STRING1O)

EJECT
CODE
ACTION# = ACTION !SAVE ACTION

85

OPEN(SCREEN) !OPEN THE SCREEN
SETCURSOR !TURN OFF ANY CURSOR
OBTAINDEPT !CALL SETUP PROCEDURE
TBL:PTR = 1 !START AT TABLE ENTRY
NDX = 1 !PUT SELECTOR BAR ON TOP ITEM
ROW = ROW(?POINT) 'REMEMBER TOP ROW AND
COL = COL(?POINT) !LEFT COLUMN OF SCROLL AREA
RECORDS# = TRUE !INITIALIZE RECORDS FLAG
CACHE(DRU:BY_DEPT,.25) !CACHE KEY FILE
LOOP !LOOP UNTIL USER EXITS

ACTION = ACTION# !RESTORE ACTION
SCR:GET_DEPT = MEM:GET_DEPT
ALERT !RESET ALERTED KEYS
ALERT(REJECT KEY) !ALERT SCREEN REJECT KEY
ALERT(ACCEPTKEY) !ALERT SCREEN ACCEPT KEY
ACCEPT !READ A FIELD
IF CHUCKED() = REJECTKEY THEN BREAK 'RETURN ON SCREEN REJECT

KEY
IF CHUCKED() = ACCEPT_KEY I !ON SCREEN ACCEPT KEY
AND FIELD() <> ?POINT !BUT NOT ON THE POINT FIELD

UPDATE ! MOVE ALI FIELDS FROM SCREEN
SELECT(?) ! START WITH CURRENT FIELD
SELECT ! EDIT ALL FIELDS
CYCLE ! GO TO TOP OF LOOP

CASE FIELD() !JUMP TO FIELD EDIT ROUTINE

OF ?FIRST_FIELD !FROM THE FIRST FIELD
IF CHUCKED() = ESC_KEY I ! RETURN ON ESC KEY
OR RECORDS# = FALSE! OR NO RECORDS

BREAK ! EXIT PROCEDURE

IF ACTION 4 ! TABLE LOOKUP REQUEST
NEWPTR = POINTER(DRUGDOG)! SET POINTER TO RECORD
IF NOT NEWPTR ! RECORD NOT PASSED TO TABLE

SET(DRU:BYDEPT,DRU:BYDEPT)! POSITION TO CLOSEST RECORD
NEXT(DRUGDOG) ! READ RECORD
NEWPTR = POINTER(DRUGDOG)! SET POINTER

DO FINDRECORD ! POSITION FILE
ELSE

NDX = 1 ! PUT SELECTOR BAR ON TOP ITEM
DO FIRST-PAGE ! BUILD MEMORY TABLE OF KEYS

RECORDS# = TRUE ! ASSUME THERE ARE RECORDS
OF ?PRE_POINT !PRE POINT FIELD CONDITION

IF CHUCKED() = ESCKEY! BACKING UP?
SELECT(?-1) ! SELECT PREVIOUS FIELD

86

ELSE ! GOING FORWARD
SELECT(?POINT) ! SELECT MENU FIELD

OF ?POINT !PROCESS THE POINT FIELD
IF RECORDS(TABLE) = 0 !IF THERE ARE NO RECORDS

CLEAR(DRU:RECORD)! CLEAR RECORD AREA
ACTION = 1 ! SET ACTION TO ADD
GET(DRUGDOG,O) ! CLEAR PENDING RECORD
UPDDRUGDOG ! CALL FORM FOR NEW RECORD
NEWPTR = POINTER(DRUGDOG)! SET POINTER TO NEW RECORD
DO FIRSTPAGE ! DISPLAY THE FIRST PAGE
IF RECORDS(TABLE) = 0! IF THERE AREN'T ANY RECORDS

RECORDS# = FALSE ! INDICATE NO RECORDS
SELECT(?PREPOINT-1)! SELECT THE PRIOR FIELD

CYCLE ! AND LOOP AGAIN

CASE CHUCKED() !PROCESS THE KEYSTROKE

OF INSKEY !INS KEY
CLEAR(DRU:RECORD)! CLEAR RECORD AREA
ACTION = 1 ! SET ACTION TO ADD
GET(DRUGDOG,O) ! CLEAR PENDING RECORD
UPDDRUGDOG ! CALL FORM FOR NEW RECORD
IF -ACTION ! IF RECORD WAS ADDED

NEWPTR = POINTER(DRUGDOG)! SET POINTER TO NEW RECORD
DO FINDRECORD ! POSITION IN FILE

OF ENTER_KEY !ENTER KEY
OROF ACCEPT_KEY !CTRL-ENTER KEY

DO GET-RECORD ! GET THE SELECTED RECORD
IF ACTION = 4 AND CUCKED() = ENTERKEY! IF THIS IS A LOOKUP

REQUEST
ACTION = 0 ! SET ACTION TO COMPLETE
BREAK ! AND RETURN TO CALLER

IF -ERROR() ! IF RECORD IS STILL THERE
ACTION = 2 ! SET ACTION TO CHANGE
UPDDRUGDOG ! CALL FORM TO CHANGE REC
IF ACTION ! IF SUCCESSFUL RE-DISPLAY

ACTN# = 0 THEN CYCLE.

NEWPTR = POINTER(DRUGDOG)! SET POINTER TO NEW RECORD
DO FINDRECORD ! POSITION IN FILE

OF DELKEY !DEL KEY
DO GETRECORD ! READ THE SELECTED RECORD
IF -ERROR() ! IF RECORD IS STILL THERE

ACTION = 3 ! SET ACTION TO DELETE
UPDDRUGDOG ! CALL FORM TO DELETE

87

IF -ACTION ! IF SUCCESSFUL
N# = NDX !SAVE POINT INDEX
DO SAME-PAGE !RE-DISPLAY
NDX = N# !RESTORE POINT INDEX

OF DOWNKEY !DOWN ARROW KEY
DO SET-NEXT ! POINT TO NEXT RECORD
DO FILL-NEXT ! FILL A TABLE ENTRY
IF FOUND ! FOUND A NEW RECORD

SCROLL(ROW,COL,ROWS,COLS,ROWS(?POINT))! SCROLL THE SCREEN UP
GET(TABLE,RECORDS(TABLE))! GET RECORD FROM TABLE
DO FILLSCREEN ! DISPLAY ON SCREEN

OF PGDN_.KEY !PAGE DOWN KEY
DO SETNEXT ! POINT TO NEXT RECORD
DO NEXT-PAGE ! DISPLAY THE NEXT PAGE

OF CTRL_PGDN !CTRL-PAGE DOWN KEY
DO LASTPAGE ! DISPLAY THE LAST PAGE
NDX = RECORDS(TABLE)! POSITION POINT BAR

OF UPKEY !UP ARROW KEY
DO SET-PREV ! POINT TO PREVIOUS RECORD
DO FILLPREV ! FILL A TABLE ENTRY
IF FOUND ! FOUND A NEW RECORD

SCROLL(ROW,COL,ROWS,COLS,-(ROWS(?POINT)))! SCROLL THE SCREEN
DOWN

GET(TABLE,l) ! GET RECORD FROM TABLE
DO FILLSCREEN ! DISPLAY ON SCREEN

OF PGUPKEY !PAGE UP KEY
DO SETPREV ! POINT TO PREVIOUS RECORD
DO PREVPAGE ! DISPLAY THE PREVIOUS PAGE

OF CTRLPGUP !CTRL-PAGE UP
DO FIRSTJPAGE ! DISPLAY THE FIRST PAGE
NDX = 1 ! POSITION POINT BAR

FREE(TABLE) !FREE MEMORY TABLE
FREE(DRU:BYDEPT) !FREE CACHE
RETURN !AND RETURN TO CALLER

SAMEPAGE ROUTINE !DISPLAY THE SAME PAGE
GET(TABLE,I) ! GET THE FIRST TABLE ENTRY
DO FILLRECORD ! FILL IN THE RECORD
SET(DRU:BYDEPT,DRU:BY_DEPT,TBL:PTR)! POSITION FILE
FREE(TABLE) ! EMPTY THE TABLE

88

DO NEXT-PAGE ! DISPLAY A FULL PAGE

FIRSTPAGE ROUTINE !DISPLAY FIRST PAGE
FREE(TABLE) ! EMPTY THE TABLE
CLEAR(DRU:RECORD,-1) ! CLEAR RECORD TO LOW VALUES
CLEAR(TBL:PTR) ! ZERO RECORD POINTER
SET(DRU:BYDEPT) ! POINT TO FIRST RECORD
LOOP NDX = 1 TO COUNT! FILL UP THE TABLE

DO FILL-NEXT ! FILL A TABLE ENTRY
IF NOT FOUND THEN BREAK! GET OUT IF NO RECORD

NDX = 1 ! SET TO TOP OF TABLE
DO SHOW-YAGE ! DISPLAY THE PAGE

LAST-PAGE ROUTINE !DISPLAY LAST PAGE
NDX# = NDX ! SAVE SELECTOR POSITION
FREE(TABLE) ! EMPTY THE TABLE
CLEAR(DRU:RECORD,1) ! CLEAR RECORD TO HIGH VALUES
CLEAR(TBL:PTR,1) I CLEAR PTR TO HIGH VALUE
SET(DRU:BYDEPT) ! POINT TO FIRST RECORD
LOOP NDX = COUNT TO 1 BY -1 ! FILL UP THE TABLE

DO FILL-PREV ! FILL A TABLE ENTRY
IF NOT FOUND THEN BREAK! GET OUT IF NO RECORD

! END OF LOOP
NDX = NDX# ! RESTORE SELECTOR POSITION
DO SHOW-PAGE ! DISPLAY THE PAGE

FIND-RECORD ROUTINE !POSITION TO SPECIFIC RECORD
SET(DRU:BYDEPT,DRU:BYDEPT,NEWPTR) !POSITION FILE
IF NEWPTR = 0 !NEWPTR NOT SET

NEXT(DRUGDOG) ! READ NEXT RECORD
NEWPTR = POINTER(DRUGDOG)! SET NEWPTR
SKIP(DRUGDOG,-l) ! BACK UP TO DISPLAY RECORD

FREE(TABLE) ! CLEAR THE RECORD
DO NEXTPAGE ! DISPLAY A PAGE

NEXTPAGE ROUTINE !DISPLAY NEXT PAGE
SAVECNT# = RECORDS(TABLE)! SAVE RECORD COUNT
LOOP COUNT TIMES ! FILL UP THE TABLE

DO FILL-NEXT ! FILL A TABLE ENTRY
IF NOT FOUND ! IF NONE ARE LEFT

IF NOT SAVECNT# !IF REBUILDING TABLE
DO LASTPAGE !FILL IN RECORDS
EXIT !EXIT OUT OF ROUTINE

BREAK ! EXIT LOOP

DO SHOWPAGE ! DISPLAY THE PAGE

89

SET-NEXT ROUTINE !POINT TO THE NEXT PAGE
GET(TABLERECORDS(TABLE))! GET THE LAST TABLE ENTRY
DO FILLRECORD ! FILL IN THE RECORD
SET(DRU:BYDEPT,DRU:BYDEPT,TBL:PTR)! POSITION FILE
NEXT(DRUGDOG) ! READ THE CURRENT RECORD

FILLNEXT ROUTINE !FILL NEXT TABLE ENTRY
FOUND = FALSE ! ASSUME RECORD NOT FOUND
LOOP UNTIL EOF(DRUGDOG) ! LOOP UNTIL END OF FILE

NEXT(DRUGDOG) ! READ THE NEXT RECORD
IF -(DRU:DEPT = MEM:GET_DEPT) THEN CYCLE.! FILTER
FOUND = TRUE ! SET RECORD FOUND
DO FILLTABLE ! FILL IN THE TABLE ENTRY
ADD(TABLE) ! ADD LAST TABLE ENTRY
GET(TABLE,RECORDS(TABLE)-COUNT)! GET ANY OVERFLOW RECORD
DELETE(TABLE) ! AND DELETE IT
EXIT ! RETURN TO CALLER

PREV-PAGE ROUTINE !DISPLAY PREVIOUS PAGE
LOOP COUNT TIMES ! FILL UP THE TABLE

DO FILL-PREV ! FILL A TABLE ENTRY
IF NOT FOUND THEN BREAK! GET OUT IF NO RECORD

DO SHOW.PAGE ! DISPLAY THE PAGE

SETPREV ROUTINE !POINT TO PREVIOUS PAGE
GET(TABLEl) ! GET THE FIRST TABLE ENTRY
DO FILL-RECORD ! FILL IN THE RECORD
SET(DRU:BYDEPT,DRU:BY_DEPT,TBL:PTR)! POSITION FILE
PREVIOUS(DRUGDOG) ! READ THE CURRENT RECORD

FILLPREV ROUTINE !FILL PREVIOUS TABLE ENTRY
FOUND = FALSE ! ASSUME RECORD NOT FOUND
LOOP UNTIL BOF(DRUGDOG)! LOOP UNTIL BEGINNING OF FILE

PREVIOUS(DRUGDOG) ! READ THE PREVIOUS RECORD
IF -(DRU:DEPT = MEM:GET_DEPT) THEN CYCLE.! FILTER
FOUND = TRUE ! SET RECORD FOUND
DO FILL_.TABLE ! FILL IN THE TABLE ENTRY
ADD{TABLEl) ! ADD FIRST TABLE ENTRY
GET(TABLE,COUNT+I) ! GET ANY OVERFLOW RECORD
DELETE(TABLE) ! AND DELETE IT
EXIT ! RETURN TO CALLER

SHOW-PAGE ROUTINE !DISPLAY THE PAGE
NDX# = NDX ! SAVE SCREEN INDEX
LOOP NDX = 1 TO RECORDS(TABLE) ! LOOP THRIJ THE TABLE

GET(TABLE,NDX) ! GET A TABLE ENTRY
DO FILLSCREEN ! AND DISPLAY IT
IF TBL:PTR = NEWPTR ! SET INDEX FOR NEW RECORD

90

NDX# = NDX ! POINT TO CORRECT RECORD

LOOP WHILE NDX <= COUNT! FINISH BLANKING THE SCREEN
BLANK(ROW(?POINT),COL(?POINT)ROWS(?POINT),COLS(.?POINT))!BLANK A LINE
NDX += 1 ! INCREMENT NDX

NDX = NDX# ! RESTORE SCREEN INDEX
NEWPTR = 0 ! CLEAR NEW RECORD POINTER
CLEAR(DRU:RECORD) ! CLEAR RECORD AREA

FILL-TABLE ROUTINE !MOVE FILE TO TABLE
TBL:LASTNAME = DRU:LASTNAME
TBL:FIRST_NAME = DRU:FIRST_NAME
TBL:SSN = DRU:SSN
TBL:RATE = DRU:RATE
TBL:WORKCENT = DRU:WORKCENT
TBL:DEPT = DRU:DEPT
TBL:PTR = POINTER(DRUGDOG)! SAVE RECORD POINTER

FILL-RECORD ROUTINE !MOVE TABLE TO FILE
DRU DEPT = TBL:DEPT
DRU:LASTNAME = TBL:LASTNAME

FILL-SCREEN ROUTINE !MOVE TABLE TO SCREEN
SCR:LASTNAME = TBL:LASTNAME
SCR:FIRSTNAME = TBL:FIRSTNAME
SCR:SSN = TBL:SSN
SCR:RATE = TBL:RATE
SCR:WORKCENT = TBL:WORKCENT

GET-RECORD ROUTINE !GET SELECTED RECORD
GET(TABLE,NDX) ! GET TABLE ENTRY
GET(DRUGDOG,TBL:PTR) ! GET THE RECORD

**** END OF DRUGDOG 3.0 SOURCE CODE *

91

APPENDIX D

DRUGDOG 3.0 USER'S MANUAL

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

SECTION
INTRODUCTION

1.1 System Overview

1.2 Software Contents

INSTALLATION

2.1 Computer Requirements
2.2 DOS and Printer Requirements
2.3 Hard Drive Considerations
2.4 DDINSTAL.EXE Installation Software
2.5 Floppy Disk Installation

SOFTWARE SPECIFICS

3.0 DRUGDOG MAIN MENU
3.1 Conduct Random Urinalysis
3.2 Roster Maintenance
3.3 Print Reports
3.4 Database Utilities
3.5 Users Guide

4.0 ROSTER MENU
4.1 View All Personnel
4.2 Adding a new record
4.3 Changing a record
4.4 Deleting a Record
4.5 Other Table Views

92

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

1I.1 DRUGDOG Overview

The DRUGDOG Software Package was designed to assist commands
in managing their Random Urinalysis Program. It provides the Command
Urinalysis Coordinator a device to painlessly select a truly random
list of personnel to undergo testing. Generally, a "command quota"
must be met on a monthly basis, and the selection process must be
completely random in nature. Written in the Clarion fourth generation
language, DRUGDOG is exceptionally easy to use. Unlike dBase, Enable
or other complicated database programs, there are no difficult
commands to learn, no thick reference manuals to decipher. A clear,
simple menu format drives all program functions. Even those with
no prior computer experience can master the program in minimal time.

How DRUGDOG Works:

The user builds a file called "DRUGDOG.DAT" that is essentially a
command "Alpha" roster containing all personnel in the command.
To generate a Random Urinalysis listing, merely tell DRUGDOG your
"command quota" number, and within seconds, DRUGDOG generates the
random numbers, retrieves the corresponding personnel from the
roster file, sorts them in alphabetical order and displays them
on-screen. The listing may be printed in Department, Division, or
WorkCenter format.

Roster Maintenance:

DRUGDOG provides easy functions to delete personnel from the
roster who have transferred, add newly reported personnel, update
the rank of promoted personnel or change the last name of personnel
due to marriage. One may check to see if an individual is in the roster
by a unique "quick-find" locator. The entire roster may be reviewed
online or printed out in alphabetic order to ensure accuracy and
completeness.

93

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

1.2 Software Contents

As with any new software, be sure to make working copy of DRUGDOG
and put the original distribution disk away in a safe place!
Although great effort was spent making DRUGDOG as user-friendly
as possible, there is NO substitute for making backup copies of
your working disk EVERY time you update the roster file.

A. DRUGDOG. EXE
Executive program used to control all primary
functions in this software package. Menu driven
format.

B. DRUGDOG.DAT
Random data file containing a list of all command
personnel. Each personnel record requires only 81
bytes of RAM.

C. MANUAL.EXE
Allows the user to read the Users' Manual directly
from the computer's monitor. (Uses MANUAL file)

D. MANUAL
The file containing this Users' Manual. A print-out
can be made and retained for future reference. To
print the manual, insert disk into drive A, ensure
you printer is on, and paper is ready. Note: Ensure
the print head is positioned at the top of a new page.
The file will automatically advance a new page as
needed.

E. DDINSTAL.EXE
Installation program to place the DRUGDOG
package on hard drive C. However, be sure to read
Section 2.3, "Hard Drive Considerations" prior to
running this file.

F. DRUGDOG.HLP
Context-sensitive online help file

G. DRUGDOG.K##
Key files for database processing.

94

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

2.0 INTRODUCTION

2.1 Hardware Requirements

The DRUGDOG software package is compatible with
the IBM PC-XT, AT, and PS/2 machines and on all clones
claiming compatibility. The INTEL 80x86 or higher
Central Processing Unit (CPU) is required to
ensure proper execution of this software. A EGA/VGA
color video driver will ensure full video compatibility.

A minimum of one floppy disk drive and 360K of RAM
is needed to effectively utilize this software. This
software has been tested on machines with an internal
clock rate from 4.77 Mhz to 66 Mhz. DRUGDOG may be
installed on the hard disk for optimum performance,
but be sure to read section 2-3, "Hard Disk Considerations"
for issues concerning overall security and the Privacy Act.

2.2 DOS & Printer Requirements

DOS version 3.0 or later should be used for correct
performance. Zenith systems provide the correct version
of DOS. Memory-resident (TSR) software such as SideKick
or AutoMenu programs reduce the amount of available RAM,
which may result in unfortunate error messages.

Any IBM compatible dot matrix printer with tractor
paper feed will adequately provide print-outs of both
the Master Roster and individual Random Urinalysis
listings. Alps, Okidata, Citizen, Epson and Panasonic
are a few of many compatible printers. Primmages
printers with continuous single sheet feeders will
also work.

95

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

2.3 Hard Disk Considerations

There are two issues to consider when installing this
application to the main hard drive:

a) The data used by this program (the Social Security Numbers)is
covered by the Privacy Act. For this reason you must be sure to
lock up the working disk when not in use and treat the disk as you
normally treat classified magnetic media under your command's ADP
Security Instructions.

b) Additionally, the very nature of this program, i.e. selecting
personnel for random urinalysis, makes it more likely to be tampered
with. Indeed, if you discover, upon attempting to review your
roster, that nothing but machine-language "garbage" comes up on
screen, it's possible that someone has corrupted your file by
attempting to remove their record from the list. Readily common
utility programs (ex:PC Tools or Norton Commander) give even
non-hackers the ability to edit data files, sometimes with
catastrophic results.

For these reasons, you may want to consider running DRUGDOG
entirely from floppy disk. There will be a noticeable increase
in time required to complete processing due to the difference in
disk access times. Generally, database programs are very disk-
intensive, so floppy drive operation is not recommended.

2.4 "DDINSTAL" Custom Hard Disk Installation Software

If you do have a secure ADP system, DO install DRUGDOG on
the hard drive. This is the RECOMMENDED method when security allows.

a) Turn on your computer and insert your copy of DRUGDOG into
a floppy drive. This disk MUST HAVE all the files listed in section
1.2 above, in addition to DDINSTAL.EXE. At the prompt, enter:

DDINSTAL.EXE

b) The install program will ask which floppy drive, A or B, the
installation disk is in. It will then create a sub-directory called
C:\DRUGDOG, and all files will be copied into it. On-screen messages
show the progress of each file during installation, and also when
the installation is complete.

To run DRUGDOG, go to your new "C:\DRUGDOG" directory
and enter: DRUGDOG.EXE

96

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

c) "Power users" who insist on (or are spoiled by) speed
and therefore MUST run software exclusively on the hard drive, can
still have a degree of security if they remove the "DRUGDOG.DAT"
file from the C:\DRUGDOG sub-directory after each use, after
performing a backup with it to a floppy disk. Again, as always,
one should always make backups after updating the roster.

2.5 FLOPPY DISK INSTALLATION

First and foremost, MAKE A BACKUP COPY OF YOUR ORIGINAL DISK!!
The importance of this cannot be overemphasize! Use your favorite
utility program, or the following DOS procedure: at the DOS prompt,
type in:

DISKCOPY A: (then press <RTN>)

When completed, use your new working copy. Put your original
disk away in a safe place. Whenever you need to use the program,
insert your working disk into drive "A" and enter

DRUGDOG.EXE (then press <RTN>)

The program takes a few seconds to load up from floppy. The next
few sections describe the operation and different features
found in DRUGDOG.

97

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

3.0 DRUGDOG MAIN MENU

After opening its data files, the program Main Menu
will come up on screen. Of course, the actual Main Menu is much
more intense than the below "stick-picture"" menu. The menu
items are the focus of this section.

I MAIN MENUI

Conduct Random Urinalysis

Roster Maintenance

Print Reports

Database Utilities

User's Manual

Exit Program

From this Main Menu, all program functions are executed. You
are returned to this menu upon exiting the selected function. To
select a menu item, place the highlight bar on that item and press
<RTN>.

With the exception of "Exit Program", these Main Menu items
are described in sections 3.1 - 3.5. These functions are fairly
self-explanatory. The user interface was carefully designed to
give the user the intuitive feel of most widely available
commercial software.

For example, as one navigates through the menu hierarchy, it
becomes apparent that, as a general rule, the <RTN> key usually
gets you the next layer "down" into the program. Conversely,
pressing <ESC> usually allows you to back out a step just before
you get into trouble. This seems true throughout the application.

98

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

Still, most users want an extensive on-line help system,
available at any point by just pressing the "Fl" key. This help
system is context-sensitive, so that help is displayed on that
screen, window, form or data entry field, etc. you are on when
F1 is pressed. These help screens are comprehensive enough
that it makes referencing a user's manual almost unnecessary.

3.1 CONDUCT RANDOM URINALYSIS

It is appropriate for this to be the first choice in
the main menu hierarchy. The focus of this application is to
create a random list of personnel. This is where the rubber
meets the road. When selected, a serious dialogue box
pops up and DRUGDOG displays 4 numeric choices
that represent 5% to 20% of the command.

The user enters the total number of personnel
required for this test period (the command "quota") based
on a current database, After entering the "quota"
number, pressing <RTN> generates the list and displays it on
screen. All names will be in alphabetical order.

3.2 ROSTER MAINTENANCE I

This item will display a second menu that provides all
facilities needed for adding, deleting or changing personnel data.
It is the user's responsibility to ensure this roster is current
prior to generating a random listing.

One can browse personnel records through four different table
listings: by Department, by Division, by WorkCenter, or the entire
command, all alphabetically by last name.

Each option is fully explained in section 4.0

99

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

3.3 PRINT REPORTS

This item pops up a second menu that offers various print
reports. Typically, those individuals just selected for urinalysis
can be printed for distribution. The list can be filtered by
Department, Division, or Workcenter. One can also retrieve and
print out past urinalysis listings from historical records.

3.4 DATABASE UTILITIES

Two utilities are provided to keep DRUGDOG operating at peak

performance and to safeguard your data: Backups and Re-Indexing.

A) BACKUP TO FLOPPY:

Insert a formatted disk in drive A and press <RTN>. A complete
copy of DRUGDOG.DAT is placed on this floppy. A dialogue box
indicates when copying is completed. This can save many hours
of agony if the data file is ever lost or destroyed on the
hard drive.

B) RE-INDEX DATA FILES:

As the database is used over a period of time, the
constant rearrangement, additions and deletions of records
in the '1ata file can lead to a noticeable decrease in
systerr ,erformance. Re-indexing is a method to "shuffle"
the database deck and return the file into its optimal
condition.

Ensure you run this utility on a routine basis.
Re-Indexing takes just a few minutes, and can make a
tremendous difference in processing time to those
who must execute DRUGDOG on floppy disks!

100

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

3.5 USER'S MANUAL

If you are reading this at the computer monitor, you already
know what this menu item is and how it works. It displays this
manual, allows fast top-to-bottom scrolling, &nd offers to print
out this manual for later enjoyment. Before printing, ensure
that the printer head is at the start of a new page. The file
will automatically form-feed the paper as necessary.

101

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

4.0 ROSTER MENU I

Selecting "Roster Maintenance" from the Main Menu will pop
up a second menu shown below. This allows one to access records
in a few different ways. In each case, a table is displayed
showing an alphabetical list of personnel. The table has a
scrolling highlight bar which is used to retrieve these personnel
records for view or modification. This menu looks as follows:

I ROSTER MENU I

View All Personnel

View by Department

View by Division

View by WorkCenter

Return

All functions are fairly self-explanatory and are discussed
in the following four sections.

As with most standard database-oriented programs, there
are three primary actions involved in maintaining your roster:
record additions, record deletions, and record modifications.
This software was designed so that only one simple form
handles all of these actions.

102

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

4.1 VIEW BY PERSONNEL I

Selecting this item from the Personnel Roster Menu will display
the entire command in alphabetical order. Note at the top of the
table a unique "locator" feature. Instead of scrolling down
through several hundred records to find "WILLIAMS", the user just
enters the first few letters of the member's last name. In this
case, one would enter "WIL" in this locator field.

As soon as entries are made, the highlight bar automatically
travels to the first record that matches what is entered in the
locator thus far. This usually places the highlight bar very close
(and often, on top of) the desired record.

This table is also your entrance to the heart of database
activities: record maintenance. The bottom of the view table
list everything you need to do at this table. If the highlight
bar is resting on a record, expect action if the ir 'rt, delete,
or Return key is pressed. There's always F1 help, i- needed.

If the data file is empty or missing upon program start,
DRUGDOG will create a new (but empty) data file, including the
key files.

The next three sections describe how to add, delete, and
modify data records directly from the display table itself.
Additionally, there is only one standardized input form, which
serves all three record transactions, saving users from having to
learn three different transaction forms.

4.1.1 Adding a new record I

To add new personnel (records) to the database, just select
any of the "View..." roster menu items. The resulting roster table
lists all members in alphabetical order. Press the "Insert" key.
Instantly, a "bright white on red" data record input form pops up,
casting a shadow on the table underneath.

103

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

The cursor is set at the first data field "Last Name". This
is the "active" data field for editing. Not only is the cursor
at the start of the field an indication, but the field itself
changes colors to a bright yellow on black. Below is an
example of a blank record input form:

Update Personnel

"Record will be Added"

Last Name:

First Name:

SSN:

Rate:

Dept:

Div:

Workcenter:

Esc => Exit Ctrl-Rtn => Save

One can move between data fields using the keyboard arrows.
Once a field has been completed, pressing <RTN> highlights the
next field down, and the cycle repeats. When the last field
is filled, the record is saved, the input form disappears, and
the record table is restored as before. However, the new
record just saved to disk is also displayed.

104

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

4.1.2 Modifying a record

Once the record is found by the "quick-find" locator or just
scrolling to it, making a change to a record is easy. Place the
highlight bar over the record, and press <RTN>. The identical record
form pops up as before, it's data fields filled with the existing
data on this record. Below is an example of the "WILLIAMS" record:

I Update Personnell

"Record will be Changed"

Last Name: WILLIAMS

First Name: JONATHAN

SSN: 3382949330

Rate: ADI

Dept: MAINTENANCE

Div: AIRCRAFT

Workcenter: POWERPLANTS

Esc => Exit Ctrl-Rtn => Save

The cursor is set at the first data field "Last Name".
Again, you can use the arrow keys to jump right to the field you
want to modify and then enter the changes. If only one or two fields
were changed, press <Ctrl-Rtn> together, and the record is saved.
Pressing <RTN> through all the unchanged fields also saves
the record changes. Pressing <Esc> collapses the input form and
does not retain any changes made to it before escaping.

105

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

4.1.3 Record Field Entries

DRUGDOG's record field entries are error-trapped
to assist new users and aid in maintaining database integrity.
The record input form below shows, via a legend, some
of the error-trapping algorithms that were encoded. This
prevents, for example, entering letters in a Zip Code
entry field, or trying to enter a Zip Code less than nine digits
in length.

Update Personnel

"Press RETURN to delete" -= Legend

Last Name: {REQ, UPP} REQ - Required data entry

First Name: {REQ, UPP} UPP - Upper case letters
are automatic

SSN: {REQ, IMM, 9NUM}
IMM - Immediate entry: as

Rate: {UPP} soon as the last
digit is entered,

Dept: {UPP, CON} entry field moves on.

Div: {UPP, REQ, CON} 9NUM - a Zip Code must be
9 numeric digits

Workcenter: {UPP, REQ, CON} between 000000000 &
999999999

CON - All codes or names
Esc => Exit Ctrl-Rtn => Save MUST be Consistent!

See section 4.2

Use <RTN> or arrow keys to move the entry field
as needed. The message at the top of the form will always
indicate the current record transaction type. Using F1 Help
provides a detailed page of field-by-field info on what you
can and can't do during record entry.

106

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

4.1.4 Deleting a record

Everybody loves to delete records, right? No problem here!
Highlight the desired record as you would normally, but press
the key for deletion. The now familiar record input form
pops up with the record and asks the user to press <RTN> to
confirm the deletion. Careful... pressing <RTN> too fast can
cost valuable data loss and promote bad attitudes.

Update Personnel

"Press RETURN to delete"

Last Name: WILLIAMS

First Name: JONATHAN

SSN: 3382949330

Rate: ADI

Dept: MAINTENANCE

Div: AIRCRAFT

Workcenter: POWERPLANTS

Esc => Exit Ctrl-Rtn => Save

Above, the "WILLIAMS" record is finally about to be
history. Note the message "Press RETURN to Delete". Only
the <RTN> key will actually delete the record; most any
other key will not. If you erred and do not want to delete
the highlighted record, the <ESC> key will always bail you out.

107

DRUGDOG 3.0 Users' Manual by D. E. Wilson, LT, USN

4.2 VIEW BY DEPARTMENT / DIVISION / WORKCENTER

These modules look, operate, and behave exactly as the
tables from "View All Personnel" menu item, with one exception:
they take the concept of the "quick-find" locator idea to a
higher level.

In selecting one of these three tables, the first task
is to be confronted with telling the system exactly which
Department, Division, WorkCenter is desired for "filtering".
When the table is assembled, it will only pull those records
who match the Department/Division/WorkCenter code or name
entered for filtering.

Therefore, it is absolutely CRITICAL that an agreed-upon
code or name be established for each Division, and that code or
name be CONSISTENTLY used by anyone involved in record
maintenance or by those who have access to the database system.

These three data elements are no more than 10 alpha-numeric
characters apiece, always in uppercase. If the names or codes
don't exactly match, the filter may bypass a true record.
Therefore, all users of the system need to ensure consistency.

However, the nature of this software system tends to
have a low number of multiple users, so a consistent list of
codes and names seems reasonable. The random selection process
in the Urinalysis algorithm does not depend on or utilize these,
or any of the other, data elements for list generation.

108

LIST OF REFERENCES

1. Burgess, Mark S., Using Clarion Professional Developer, First
Edition, Addison-Wesley Publishing Company, 1991.

2. Date, C. J., An Introduction into Database Systems, Fourth
Edition, Addison-Wesley Publishing Company, 1986.

3. Kroenke, David M., Database Processing; Fundamentals /
Design / Implementation, Fourth Edition, Macmilliam
Publishing Company, 1992.

4. Pressman, Roger S., Software Engineering: A Practitioner's
Approach, Third Edition, McGraw-Hill Inc., 1992.

5. Weitz, Lori, "4GLs keeping current with new technology; life
being extended by support for GUIs, multiple DBMSs, rapid
development", Software Magazine, May 1993 v13 n7, Sentry
Publishing Company Inc., 1993.

6. Sommerville, Ian, Software Engineering, Fourth Edition,
Addison-Wesley Publishing Company, 1992.

7. Rinehart, Martin L., "When to use an AppGen - and when not
to.", Data Based Advisor, Oct 1993 v11 nl0, Data Based
Solutions Inc., 1993.

8. Chief of Naval Operations Instruction 5350.4 "Naval Alcohol
and Substance Abuse Prevention Program", 1993.

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Computer Technology Programs, Code 37 2
Naval Postgraduate School
Monterey, California 93943-500

4. Department of Management Sciences, Code AS 2
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Norman F. Schneidewind 1
Naval Postgraduate School
Monterey, California 93943-5000

6. William B. Short, CDR, SC, USN 1
Naval Postgraduate School
Monterey, California 93943-5000

7. Dale E. Wilson, LT, USN 3
Patrol Squadron 46 (VP-46)
FPO AP 96601-5919

110

